Journal of Bioenergetics and Biomembranes

, Volume 39, Issue 3, pp 235–241 | Cite as

Actuality of Warburg’s views in our understanding of renal cancer metabolism

  • Catherine Godinot
  • Elodie de Laplanche
  • Eric Hervouet
  • Hélène Simonnet
Mini Review


More than 50 years ago, Warburg proposed that the shift in glucose metabolism from oxidative phosphorylation (OXPHOS) to glycolysis occurring in spite of an adequate oxygen supply was at the root of cancer. This hypothesis often disregarded over the following years has recently stirred up much interest due to progress made in cancer genetics and proteomics. Studies related to renal cancers have been particularly informative to understand how abnormal use of glucose and decrease in OXPHOS are linked to cell proliferation in tumors. Indeed, in aggressive tumors such as clear cell renal carcinoma, the von Hippel–Lindau factor invalidation stabilizes the hypoxia-inducible factor (HIF) in the presence of oxygen. HIF stimulating glycolytic gene expression increases the glycolytic flux. Deficiencies in genes involved in oxidative phosphorylation that can explain the down-regulation of OXPHOS components also begin to be identified. These findings are important in the search for novel therapeutic approaches to cancer treatment.


Hypoxia-inducible factor Glycolysis Oxidative phosphorylation Renal cancer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atherton PJ, Babraj J, Smith K, Singh J, Rennie MJ, Wackerhage H (2005) Selective activation of AMPK-PGC-1α or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J 19:786–788Google Scholar
  2. Bardos JI, Ashcroft M (2005) Negative and positive regulation of HIF-1: a complex network. Biochim Biophys Acta 1755:107–120Google Scholar
  3. Berra E, Ginouves A, Pouyssegur J (2006) The hypoxia-inducible-factor hydroxylases bring fresh air into hypoxia signaling. EMBO Rep 7:41–45CrossRefGoogle Scholar
  4. Birnbaum MJ, Haspel HC, Rosen OM (1987) Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription. Science 235:1495–1498CrossRefGoogle Scholar
  5. Bonora E, Porcelli AM, Gasparre G, Biondi A, Ghelli A, Carelli V, Baracca A, Tallini G, Martinuzzi A, Lenaz G, Rugolo M, Romeo G (2006) Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res 66:6087–6096CrossRefGoogle Scholar
  6. Bryant J, Farmer J, Kessler LJ, Townsend RR, Nathanson KL (2003) Pheochromocytoma: the expanding genetic differential diagnosis. J Natl Cancer Inst 95:1196–1204CrossRefGoogle Scholar
  7. Cayre A, Rossignol F, Clottes E, Penault-Llorca F (2003) aHIF but not HIF-1α transcript is a poor prognostic marker in human breast cancer. Breast Cancer Res 5:R223–R230CrossRefGoogle Scholar
  8. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia. A mechanism of O2 sensing. J Biol Chem 275:25130–25138CrossRefGoogle Scholar
  9. Craven RA, Hanrahan S, Totty N, Harnden P, Stanley AJ, Maher ER, Harris AL, Trimble WS, Selby PJ, Banks RE (2006a) Proteomic identification of a role for the von Hippel–Lindau tumour suppressor in changes in the expression of mitochondrial proteins and ceptin 2 in renal cell carcinoma. Proteomics 6:3880–3893CrossRefGoogle Scholar
  10. Craven RA, Stanley AJ, Hanrahan S, Dods J, Unwin R, Totty N, Harnden P, Eardley I, Selby PJ, Banks RE (2006b) Proteomic analysis of primary cell lines identifies protein changes present in renal carcinoma. Proteomics 6:2853–2864CrossRefGoogle Scholar
  11. Cuezva JM, Krajewska M, de Heredia ML, Krajewski S, Santamaria G, Kim H, Zapata JM, Marusawa H, Chamorro M, Reed JC (2002) The bioenergetic signature of lung adenocarcinomas is a molecular marker of cancer diagnosis and prognosis. Cancer Res 62:6674–6681Google Scholar
  12. Cuezva JM, Chen G, Alonso AM, Isidoro A, Misek DE, Hanash SM, Beer DG (2004) The bioenergetic signature of cancer: a marker of tumor progression. Carcinogenesis 25:1157–1163CrossRefGoogle Scholar
  13. Dang CV, Semenza GL (1999) Oncogenic alterations of metabolism. Trends Biochem Sci 2:68–72CrossRefGoogle Scholar
  14. de Laplanche E, Demont J, Godinot C, Simonnet H (2005) HIF1 alpha (Hypoxia Inducible Factor) mRNA expression is regulated by glucose. Diabetes Metab 31:1582Google Scholar
  15. de Laplanche E, Gouget K, Cleris G, Dragounoff F, Demont J, Morales A, Bezin L, Godinot C, Perriere G, Mouchiroud D, Simonnet H (2006) Physiological oxygenation status is required for fully differentiated phenotype in kidney cortex proximal tubules. Am J Physiol Renal Physiol 291:F750–F760CrossRefGoogle Scholar
  16. Diamond I, Legg A, Schneider JA, Rozengurt E (1978) Glycolysis in quiescent of 3T3 cells. Stimulation by serum, epidermal growth factor, and insulin in intact cells and persistence of the stimulation after cell homogenization. J Biol Chem 253:866–871Google Scholar
  17. Dias N, Bailly C (2005) Drugs targeting mitochondrial functions to control tumor cell growth. Biochem Pharmacol 70:1–12CrossRefGoogle Scholar
  18. Eng C, Kiuru M, Fernandez MJ, Aaltonen LA (2003) A role for metochondrial enzymes in inherited neoplasia and beyond. Nat Rev Cancer 3:193–202CrossRefGoogle Scholar
  19. Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9:425–434CrossRefGoogle Scholar
  20. Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129:111–122Google Scholar
  21. Geshwind JF, Georgiades CS, Ko YH, Pedersen PL (2004) Recently elucidated energy catabolism pathways provide opportunities for novel treatments in hepatocellular carcinoma. Expert Rev Anticancer Ther 4:449–457CrossRefGoogle Scholar
  22. Gottlieb E, Tomlinson IP (2005) Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 5:857–866CrossRefGoogle Scholar
  23. Gwak GY, Yoon JH, Kim KM, Lee HS, Chung JW, Gores GJ (2005) Hypoxia stimulates proliferation of human hepatoma cells through the induction of hexokinase II expression. J Hepatol 42:358–364CrossRefGoogle Scholar
  24. Heddi A, Stepien G, Benke PJ, Wallace DC (1999) Coordinate induction of energy gene expression in tissues of mitochondrial disease patients. J Biol Chem 274:22968–22976CrossRefGoogle Scholar
  25. Hervouet E (2006) Mechanisms affecting mitochondrial biogenesis in renal tumors: renal cell carcinoma and oncocytoma. pHD thesis, University of Lyon 1, FranceGoogle Scholar
  26. Hervouet E, Godinot C (2006) Mitochondrial disorders in renal tumors. Mitochondrion 6:105–117CrossRefGoogle Scholar
  27. Hervouet E, Demont J, Pecina P, Vojtiskova A, Houstek J, Simonnet H, Godinot C (2005) A new role for the von Hippel–Lindau tumor suppressor protein: stimulation of mitochondrial oxidative phosphorylation complex biogenesis. Carcinogenesis 26:531–539CrossRefGoogle Scholar
  28. Hervouet E, Pecina P, Demont J, Vojtiskova A, Simonnet H, Houstek J, Godinot C (2006) Inhibition of cytochrome c oxidase subunit 4 precursor processing by the hypoxia mimic cobalt chloride. Biochem Biophys Res Commun 344:1086–1093CrossRefGoogle Scholar
  29. Houstek J, Pickova A, Vojtiskova A, Mracek T, Pecina P, Jesina P (2006) Mitochondrial diseases and genetic defects of ATP synthase. Biochim Biophys Acta 1757:1400–1405CrossRefGoogle Scholar
  30. Iliopoulos O, Kibel A, Gray S, Kaelin WG Jr (1995) Tumour suppression by the human von Hippel–Lindau gene product. Nat Med 1:822–826CrossRefGoogle Scholar
  31. Iliopoulos O, Levy AP, Jiang C, Kaelin WG Jr, Goldberg MA (1996) Negative regulation of hypoxia-inducible genes by the von Hippel–Lindau protein. Proc Natl Acad Sci 93:10595–10599CrossRefGoogle Scholar
  32. Isidoro A, Martinez M, Fernandez PL, Ortega AD, Santamaria G, Chamorro M, Reed JC, Cuezva JM (2004) Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. Biochem J 378:17–20CrossRefGoogle Scholar
  33. Kaelin WG (2005) The von Hippel–Lindau tumor suppressor protein: roles in cancer and oxygen sensing. Cold Spring Harb Symp Quant Biol 70:159–166CrossRefGoogle Scholar
  34. Kaelin WG, Maher ER (1998) The VHL tumour-suppressor gene paradigm. Trends Genet 14:423–426CrossRefGoogle Scholar
  35. Kawai S, Hanafusa H (1971) The effects of reciprocal changes in temperature on the transformed state of cells infected with rous sarcoma virus mutant. Virology 46:470–479CrossRefGoogle Scholar
  36. Kietzmann T, Gorlach A (2005) Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression. Semin Cell Dev Biol 16:474–486CrossRefGoogle Scholar
  37. Kim W, Kaelin WG Jr (2003) HIF-1-mediated expression pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Curr Opin Genet Dev 13:55–60CrossRefGoogle Scholar
  38. Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) The von Hippel–Lindau tumour suppressor protein: new insights into oxygen sensing and cancer. Cell Metab 3:177–185CrossRefGoogle Scholar
  39. Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, Pedersen PL (2004) Advanced cancers: eradication in all cases treated using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 324:269–275CrossRefGoogle Scholar
  40. Maher ER, Eng C (2002) The pressure rises: update on the genetics of phaeochromocytoma. Hum Mol Genet 11:2347–2354CrossRefGoogle Scholar
  41. Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidmarsh GF, De Young LR, Lampidis TJ (2004) 2-Deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res 64:31–34CrossRefGoogle Scholar
  42. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM (2006) p53 regulates mitochondrial respiration. Science 312:1650–1653CrossRefGoogle Scholar
  43. Meierhofer DJ, Mayr A, Foetschl U, Berger A, Fink K, Schmeller N, Hacker GW, Hauser-Kronberger C, Kofler B, Sperl W (2004) Decrease of mitochondrial DNA content and energy metabolism in renal carcinoma. Carcinogenesis 25:1005–1010CrossRefGoogle Scholar
  44. Modica-Napolitano JS, Singh K (2004) Mitochondrial dysfunction in cancer. Mitochondrion 4:755–762CrossRefGoogle Scholar
  45. Molinie V, Cochand-Priollet B, Staroz F, Vieillefond A (1998) Classifications of primary kidney tumors in adults. Ann Pathol 18:29–47Google Scholar
  46. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197CrossRefGoogle Scholar
  47. Pedersen PL, Mathupala S, Rempel A, Geschwind JF, Ko YH (2002) Mitochondrial bound-type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta 1555:14–20CrossRefGoogle Scholar
  48. Pollard PJ, Wortham NC, Tomlinson IP (2003) The TCA cycle and tumorigenesis: the examples of fumarate hydratase and succinate dehydrogenase. Ann Med 35:632–639CrossRefGoogle Scholar
  49. Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441:437–443CrossRefGoogle Scholar
  50. Rossignol F, Vache C, Clottes E (2002) Natural antisense transcripts of HIF-1α are conserved in rodents. Gene 299:135–140CrossRefGoogle Scholar
  51. Rossignol F, de Laplanche E, Mounier R, Bonnefont J, Cayre A, Godinot C, Simonnet H, Clottes E (2004) Natural antisense transcripts of hypoxia-inducible factor 1α are detected in different normal and tumour human tissues. Gene 339:121–130CrossRefGoogle Scholar
  52. Rowell LB (1974) Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 54:75–159Google Scholar
  53. Savagner F, Mirebeau D, Jacques C, Guyetant S, Morgan C, Franc B, Reynier P, Malthiery Y (2003) PGC-1-related coactivator and targets are upregulated in thyroid oncocytoma. Biochem Biophys Res Commun 310:779–784CrossRefGoogle Scholar
  54. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, Gottlieb E (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7:77–85CrossRefGoogle Scholar
  55. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732CrossRefGoogle Scholar
  56. Shankland SJ, Wolf G (2000) Cell cycle regulatory proteins in renal disease: role in hyperthrophy, proliferation, and apoptosis. Am J Physiol Renal Physiol 278:F515–F529Google Scholar
  57. Shaw RJ (2006) Glucose metabolism and cancer. Current Opin Cell Biol 18:598–608CrossRefGoogle Scholar
  58. Shi T, Dong F, Liou LS, Duan ZH, Novick AC, Di Donato JA (2004) Differential protein profiling in renal-cell carcinoma. Mol Carcinog 40:47–61CrossRefGoogle Scholar
  59. Simonnet H (1999) Glucose-6-phosphatase mRNA levels in kidney isolated tubule suspensions are increased by dexamethasone and decreased by insulin. Metabolism 48:1052–1056CrossRefGoogle Scholar
  60. Simonnet H, Alazard N, Pfeiffer K, Gallou C, Beroud C, Demont J, Bouvier R, Schägger H, Godinot C (2002) Low mitochondrial respiratory chain content correlates with tumour aggressiveness in renal cell carcinoma. Carcinogenesis 23:759–768CrossRefGoogle Scholar
  61. Simonnet H, Demont J, Pfeiffer K, Guenaneche L, Bouvier R, Brandt U, Schagger H, Godinot C (2003) Mitochondrial complex I is deficient in renal oncocytomas. Carcinogenesis 24:1461–1466CrossRefGoogle Scholar
  62. Smeitink J, van den Heuvel L, DiMauro S (2001) The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2:342–352CrossRefGoogle Scholar
  63. Stiburek L, Vesela K, Hansikova H, Pecina P, Tesarova M, Cerna L, Houstek J, Zeman J (2005) Tissue specific cytochrome c oxidase assembly defects due to mutations in SCO2 and SURF1. Biochem J 392:625–632CrossRefGoogle Scholar
  64. Thrash-Bingham CA, Tartof KD (1999) aHIF: a natural antisense transcript overexpressed in human renal cancer and during hypoxia. J Natl Cancer Inst 91:143–151CrossRefGoogle Scholar
  65. Tickoo SK, Lee MW, Eble JM, Amin M, Christopherson T, Zarbo RJ, Amin MB (2000) Ultrastructural observations on mitochondria and microvesicles in renal oncocytoma, chromophobe renal cell carcinoma and eosinophilic variant of conventional (clear cell) renal cell carcinoma. Am J Surg Pathol 24:1247–1256CrossRefGoogle Scholar
  66. Ullah MS, Davies AJ, Halestrap AP (2006) The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism. J Biol Chem 281:9030–9037CrossRefGoogle Scholar
  67. Unwin RD, Craven RA, Harnden P, Hanrahan S, Totty N, Knowles M, Eardley I, Selby PJ, Banks RE (2003) Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect. Proteomics 3:1620–1632CrossRefGoogle Scholar
  68. Van Spronsen DJ, Mulders PF, De Mulder PH (2005) Novel treatments for metastatic renal cell carcinoma. Crit Rev Oncol Hematol 55:177–191CrossRefGoogle Scholar
  69. Warburg O (1956) On the origin of cancer cells on the metabolism of tumours in the body. Science 123:309–314CrossRefGoogle Scholar
  70. Warburg O, Wind F, Neglers E (1930) In: Metabolism of tumours Warburg O (ed.). Constable and Co., London, pp 254–270Google Scholar
  71. Wenger RH, Stehl DP, Camenish G (2005) Integration of oxygen signaling at the consensus HRE. Sci STKE 306:12Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Catherine Godinot
    • 1
  • Elodie de Laplanche
    • 1
  • Eric Hervouet
    • 1
    • 2
  • Hélène Simonnet
    • 1
  1. 1.Center of Molecular and Cellular Genetics (CGMC), UMR 5534, CNRSUniversity Claude Bernard of Lyon 1VilleurbanneFrance
  2. 2.Inserm U601Institute of BiologyNantesFrance

Personalised recommendations