Journal of Bioenergetics and Biomembranes

, Volume 39, Issue 3, pp 231–234 | Cite as

HIF-1 mediates the Warburg effect in clear cell renal carcinoma

  • Gregg L. Semenza
Mini Review


Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that functions as a master regulator of oxygen homeostasis in all metazoan species. O2-dependent hydroxylation of two proline residues in the HIF-1α subunit is necessary for the binding of the von Hippel–Lindau (VHL) protein, which is a component of a ubiquitin protein ligase that ubiquitinates HIF-1α, leading to its degradation by the proteasome. In the majority of cases of the clear cell type of renal carcinoma, both VHL genes are inactivated by mutation or epigenetic silencing, leading to dysregulated HIF-1 transcriptional activity. VHL loss-of-function leads, under aerobic conditions, to a HIF-1-dependent reprogramming of glucose and energy metabolism that includes increased glucose uptake, glycolysis, and lactate production accompanied by a reciprocal decrease in respiration. These findings delineate for the first time the molecular mechanisms underlying the Warburg effect in a human cancer.


Glucose transport Glycolysis Hypoxia von Hippel–Lindau 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bruick RK, McKnight SL (2001) Science 294:1337–1340CrossRefGoogle Scholar
  2. Carroll RC, Ash JF, Vogt PK, Singer SJ (1978) Proc Natl Acad Sci USA 75:5015–5019CrossRefGoogle Scholar
  3. Craven RA, Hanrahan S, Totty N, Harnden P, Stanley AJ, Maher ER, Harris AL, Trimble WS, Selby PJ, Banks RE (2006) Proteomics 6:3880–3893CrossRefGoogle Scholar
  4. Ebert BL, Firth JD, Ratcliffe PJ (1995) J Biol Chem 270:29083–29089CrossRefGoogle Scholar
  5. Elvidge GP, Glenny L, Appelhoff RJ, Ratcliffe PJ, Ragoussis J, Gleadle JM (2006) J Biol Chem 281:15215–15226CrossRefGoogle Scholar
  6. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ (2001) Cell 107:43–54CrossRefGoogle Scholar
  7. Firth JD, Ebert BL, Ratcliffe PJ (1995) J Biol Chem 270:21021–21027CrossRefGoogle Scholar
  8. Gatenby RA, Gillies RJ (2004) Nat Rev, Cancer 4:891–899CrossRefGoogle Scholar
  9. Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Cell Metab 1:401–408CrossRefGoogle Scholar
  10. Hervouet E, Demont J, Pecina P, Vojtiskova A, Houstek J, Simonnet H, Godinot C (2005) Carcinogenesis 26:531–539CrossRefGoogle Scholar
  11. Hervouet E, Godinot C (2006) Mitochondrion 6:105–117CrossRefGoogle Scholar
  12. Hirota K, Semenza GL (2006) Crit Rev Oncol Hematol 59:15–26CrossRefGoogle Scholar
  13. Huang LE, Gu J, Schau M, Bunn HF (1998) Proc Natl Acad Sci USA 95:7987–7992CrossRefGoogle Scholar
  14. Ivan M, Haberberger T, Gervasi DC, Michelson KS, Gunzler V, Kondo K, Yang H, Sorokina I, Conaway RC, Conaway JW, Kaelin WG Jr (2002) Proc Natl Acad Sci USA 99:13459–13464CrossRefGoogle Scholar
  15. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) Science 292:464–468Google Scholar
  16. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL (1998) Genes Dev 12:149–162Google Scholar
  17. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim AV, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Science 292:468–472Google Scholar
  18. Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M (2001) FASEB J 15:1312–1314Google Scholar
  19. Jiang B-H, Semenza GL, Bauer C, Marti HH (1996) Am J Physiol 271:C1172–C1180Google Scholar
  20. Kallio PJ, Wilson WJ, O’Brien S, Makino Y, Poellinger L (1999) J Biol Chem 274:6519–6525CrossRefGoogle Scholar
  21. Kamura T, Sato S, Iwai K, Czyzyk-Krzeska M, Conaway RC, Conaway JW (2000) Proc Natl Acad Sci USA 97:10430–10435CrossRefGoogle Scholar
  22. Kim J-W, Tchernyshyov I, Semenza GL, Dang CV (2006) Cell Metab 3:177–185CrossRefGoogle Scholar
  23. Lehninger AL (1982) Principles of biochemistry. Worth, New YorkGoogle Scholar
  24. Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ, Garcia JG, Semenza GL (2005) Blood 105:659–669CrossRefGoogle Scholar
  25. Mandriota SJ, Turner KJ, Davies DR, Murray PG, Morgan NV, Sowter HM, Wykoff CC, Maher ER, Harris AL, Ratcliffe PJ, Maxwell PH (2002) Cancer Cell 1:459–468CrossRefGoogle Scholar
  26. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher, ER, Ratcliffe PJ (1999) Nature 399:271–275CrossRefGoogle Scholar
  27. Meierhofer D, Mayr JA, Foetschl U, Berger A, Fink K, Schmeller N, Hacker GW, Hauser-Kronberger C, Kofler B, Sperl W (2004) Carcinogenesis 25:1005–1010CrossRefGoogle Scholar
  28. Motzer RJ, Bacik J, Mazumdar M (2004) Clin Cancer Res 10:6302S–6303SCrossRefGoogle Scholar
  29. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) Cell Metab 3:187–197CrossRefGoogle Scholar
  30. Ryan HE, Lo J, Johnson RS (1998) EMBO J 17:3005–3015CrossRefGoogle Scholar
  31. Salceda S, Caro J (1997) J Biol Chem 272:22642–22647CrossRefGoogle Scholar
  32. Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, Laderoute K, Johnson RS (2001) Mol Cell Biol 21:3436–3444CrossRefGoogle Scholar
  33. Semenza GL (2003) Nat Rev Cancer 3:721–732CrossRefGoogle Scholar
  34. Semenza GL, Jiang B-H, Leung SW, Passantino R, Concordet J-P, Maire P, Giallongo A (1996) J Biol Chem 271:32529–32537CrossRefGoogle Scholar
  35. Semenza GL, Roth PH, Fang H-M, Wang GL (1994) J Biol Chem 269:23757–23763Google Scholar
  36. Semenza GL, Wang GL (1992) Mol Cell Biol 12:5447–5454Google Scholar
  37. Simonnet H, Alazard N, Pfeiffer K, Gallou C, Beroud C, Demont J, Bouvier R, Schagger H, Godinot C (2002) Carcinogenesis 23:759–768CrossRefGoogle Scholar
  38. Singh VN, Singh M, August JT, Horecker BL (1974) Proc Natl Acad Sci USA 71:4129–4132CrossRefGoogle Scholar
  39. Steck TL, Kaufman S, Bader JP (1968) Cancer Res 28:1611–1619Google Scholar
  40. Tian H, McKnight SL, Russell DW (1997) Genes Dev 11:72–82CrossRefGoogle Scholar
  41. Unwin RD, Craven RA, Harnden P, Hanrahan S, Totty N, Knowles M, Eardley I, Selby PJ, Banks RE (2003) Proteomics 3:1620–1632CrossRefGoogle Scholar
  42. Wang GL, Jiang B-H, Rue EA, Semenza GL (1995) Proc Natl Acad Sci USA 92:5510–5514CrossRefGoogle Scholar
  43. Wang GL, Semenza GL (1995) J Biol Chem 270:1230–1237CrossRefGoogle Scholar
  44. Wiesener MS, Turley H, Allen WE, Willam C, Eckardt KU, Talks KL, Wood SM, Gatter KC, Harris AL, Pugh CW, Ratcliffe PJ, Maxwell PH (1998) Blood 92:2260–2268Google Scholar
  45. Yu AY, Frid MG, Shimoda LA, Wiener CM, Stenmark K, Semenza GL (1998) Am J Physiol 275:L818–L826Google Scholar
  46. Yu F, White SB, Zhao Q, Lee FS (2001) Proc Natl Acad Sci USA 98:9630–9635CrossRefGoogle Scholar
  47. Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL (2007) Cancer Cell 11:407–420Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Vascular Biology Program, Institute for Cell Engineering, Departments of Pediatrics, Medicine, Oncology, and Radiation Oncology, and McKusick-Nathans Institute of Genetic MedicineThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Johns Hopkins Institute for Cell EngineeringBaltimoreUSA

Personalised recommendations