Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 39, Issue 1, pp 73–77 | Cite as

Lactate and malignant tumors: A therapeutic target at the end stage of glycolysis

  • Saroj P. Mathupala
  • Chaim B. Colen
  • Prahlad Parajuli
  • Andrew E. Sloan
Mini Review

Abstract

Metabolic aberrations in the form of altered flux through key metabolic pathways are primary hallmarks of many malignant tumors. Primarily the result of altered isozyme expression, these adaptations enhance the survival and proliferation of the tumor at the expense of surrounding normal tissue. Consequently, they also expose a unique set of targets for tumor destruction while sparing healthy tissues. Despite this fact, development of drugs to directly target such altered metabolic pathways of malignant tumors has been under-investigated until recently. One such target is the ultimate step of glycolysis, which, as expected, presents itself as a metabolic aberration in most malignant tumors. Termed “aerobic glycolysis” due to abnormal conversion of pyruvic acid to lactic acid even under normoxia, the altered metabolism requires these tumors to rapidly efflux lactic acid to the microenvironment in order to prevent poisoning themselves. Thus, exposed is a prime “choke-point” to target these highly malignant, frequently chemo- and radio- resistant tumors. This review will focus on current outcomes in targeting lactate efflux in such tumors using glioma as a model, an ongoing project in our laboratory for the past half-decade, as well as supporting evidence from recent studies by others on targeting this “tail-end” of glycolysis in other tumor models.

Keywords

Lactate MCT Monocarboxylate transport Glioma Malignant tumors 

Abbreviations

MCT

monocarboxylate transporter

LDH

lactate dehydrogenase

siRNA

small intefering RNA

miRNA

microRNA

CD

cluster of differentiation

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argiles JM, Lopez-Soriano FJ (1990) Med Hypotheses 32:151–155PubMedCrossRefGoogle Scholar
  2. Baggetto LG (1992) Biochimie 74:959–974PubMedCrossRefGoogle Scholar
  3. Berg JM, Tymoczko JL, Stryer L (2006) Biochemistry. 6th ed. New York, WH FreemanGoogle Scholar
  4. Carpenter L, Halestrap AP (1994) Biochem J 304(Pt 3):751–760PubMedGoogle Scholar
  5. Chi SL, Pizzo SV (2006) Cancer Res 66:875–882PubMedCrossRefGoogle Scholar
  6. Coady MJ, Chang MH, Charron FM, Plata C, Wallendorff B, Sah JF, Markowitz SD, Romero MF, Lapointe JY (2004) J Physiol 557:719–731PubMedCrossRefGoogle Scholar
  7. Colen CB, Seraji-Bozorgzad N, Marples B, Galloway MP, Sloan AE, Mathupala SP (2006) Neurosurgery 59:1313–1324Google Scholar
  8. Coss RA, Messinger JA, Wahl ML, Wachsberger PR, Leeper DB, Owen CS (1997) Int J Hyperthermia 13:325–336PubMedCrossRefGoogle Scholar
  9. Coss RA, Storck CW, Daskalakis C, Berd D, Wahl ML (2003) Mol Cancer Ther 2:383–388PubMedGoogle Scholar
  10. Das B, Mondragon MO, Sadeghian M, Hatcher VB, Norin AJ (1994) J Exp Med 180:273–281PubMedCrossRefGoogle Scholar
  11. Fang J, Quinones QJ, Holman TL, Morowitz MJ, Wang Q, Zhao H, Sivo F, Maris JM, Wahl ML (2006) Mol Pharmacol 70:2108–2115Google Scholar
  12. Fantin VR, St Pierre J, Leder P (2006) Cancer Cell 9:425–434PubMedCrossRefGoogle Scholar
  13. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Nature 391:806–811PubMedCrossRefADSGoogle Scholar
  14. Gatenby RA, Gawlinski ET (2003) Cancer Res 63:3847–3854PubMedGoogle Scholar
  15. Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ (2006) Cancer Res 66:5216–5223PubMedCrossRefGoogle Scholar
  16. Gatenby RA, Gillies RJ (2004) Nat Rev Cancer 4:891–899PubMedCrossRefGoogle Scholar
  17. Gillies RJ, Martinez-Zaguilan R, Martinez GM, Serrano R, Perona R (1990) Proc Natl Acad Sci USA 87:7414–7418PubMedCrossRefADSGoogle Scholar
  18. Halestrap AP, Denton RM (1974) Biochem J 138:313–316PubMedGoogle Scholar
  19. Halestrap AP, Meredith D (2004) Pflugers Arch 447:619–628PubMedCrossRefGoogle Scholar
  20. Halestrap AP, Price NT (1999) Biochem J 343(Pt 2):281–299PubMedCrossRefGoogle Scholar
  21. Juel C, Halestrap AP (1999) J Physiol 517(Pt 3):633–642PubMedCrossRefGoogle Scholar
  22. Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW (2004) Science 305:99–103PubMedCrossRefADSGoogle Scholar
  23. Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN, Halestrap AP (2000) EMBO J 19:3896–3904PubMedCrossRefGoogle Scholar
  24. Lee AH, Tannock IF (1998) Cancer Res 58:1901–1908PubMedGoogle Scholar
  25. Lee RC, Feinbaum RL, Ambros V (1993) Cell 75:843–854PubMedCrossRefGoogle Scholar
  26. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Science 299:1540PubMedCrossRefGoogle Scholar
  27. Mathupala SP, Ko YH, Pedersen PL (2006) Oncogene 25:4777–4786PubMedCrossRefGoogle Scholar
  28. Mathupala SP, Parajuli P, Sloan AE (2004) Neurosurgery 55:1410–1419PubMedCrossRefGoogle Scholar
  29. Owen CS, Pooler PM, Wahl ML, Coss RA, Leeper DB (1997) J Cell Physiol 173:397–405PubMedCrossRefGoogle Scholar
  30. Pedersen PL (1978) Prog Exp Tumor Res 22:190–274PubMedGoogle Scholar
  31. Pellerin L, Magistretti PJ (2004) Science 305:50–52PubMedCrossRefGoogle Scholar
  32. Poole RC, Halestrap AP (1993) Am J Physiol 264:C761–C782PubMedGoogle Scholar
  33. Rotin D, Tannock IF (1984) Int J Radiat Oncol Biol Phys 10:1595–1598PubMedGoogle Scholar
  34. Spencer TL, Lehninger AL (1976) Biochem J 154:405–414PubMedGoogle Scholar
  35. Stubbs M, McSheehy PM, Griffiths JR (1999) Adv Enzyme Regul 39:13–30PubMedCrossRefGoogle Scholar
  36. Stubbs M, Rodrigues L, Howe FA, Wang J, Jeong KS, Veech RL, Griffiths JR (1994) Cancer Res 54:4011–4016PubMedGoogle Scholar
  37. Volk C, Kempski B, Kempski OS (1997) Neurosci Lett 223:121–124PubMedCrossRefGoogle Scholar
  38. Wahl ML, Owen JA, Burd R, Herlands RA, Nogami SS, Rodeck U, Berd D, Leeper DB, Owen CS (2002) Mol Cancer Ther 1:617–628PubMedGoogle Scholar
  39. Warburg O, Dickens F, Kaiser Wilhelm-Institut für Biologie B (1930) The metabolism of tumours: investigations from the Kaiser-Wilhelm Institute for Biology. Berlin-Dahlem, London, ConstableGoogle Scholar
  40. Wilson MC, Meredith D, Fox JE, Manoharan C, Davies AJ, Halestrap AP (2005) J Biol Chem 280:27213–27221PubMedCrossRefGoogle Scholar
  41. Yamagata M, Hasuda K, Stamato T, Tannock IF (1998) Br J Cancer 77:1726–1731PubMedGoogle Scholar
  42. Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) Cell 101:25–33PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Saroj P. Mathupala
    • 1
  • Chaim B. Colen
    • 2
  • Prahlad Parajuli
    • 2
  • Andrew E. Sloan
    • 3
  1. 1.Department of Neurological Surgery and Karmanos Cancer InstituteWayne State University School of MedicineDetroitUSA
  2. 2.Department of Neurological SurgeryWayne State University School of MedicineDetroitUSA
  3. 3.Neuro-Oncology Program, H. Lee Moffitt Cancer CenterUniversity of South FloridaTampaUSA

Personalised recommendations