Journal of Bioenergetics and Biomembranes

, Volume 39, Issue 1, pp 65–72 | Cite as

Mitocans as anti-cancer agents targeting mitochondria: lessons from studies with vitamin E analogues, inhibitors of complex II

  • Jiri Neuzil
  • Jeffrey C. Dyason
  • Ruth Freeman
  • Lan-Feng Dong
  • Lubomir Prochazka
  • Xiu-Fang Wang
  • Immo Scheffler
  • Stephen J. Ralph
Mini Review


Recently mitochondria in cancer cells have emerged as the Achilles heel for tumour destruction. Anti-cancer agents specifically targeting cancer cell mitochondria are referred to as ‘mitocans’. These compounds act by destabilising these organelles, unleashing their apoptogenic potential, resulting in the efficient death of malignant cells and suppression of tumour growth. Importantly, at least some mitocans are selective for cancer cells, and these are represented by the group of redox-silent vitamin E analogues, epitomised by α-tocopheryl succinate (α-TOS). This compound has proven itself in pre-clinical models to be an efficient anti-cancer agent, targeting complex II of the respiratory chain to displace ubiquinone binding. We propose that disrupting the electron flow of mitochondrial complex II results in generation of superoxide, triggering mitochondrial destabilisation and initiation of apoptotic pathways. Moreover, α-TOS is selective for cancer cells with their reduced anti-oxidant defenses and lower esterase activity than the normal (non-malignant) counterparts. In this mini-review we discuss the emerging significance of mitocans, as exemplified by α-TOS.


Mitocans Mitochondria Complex II Coenzyme Q Vitamin E analogues Superoxide Apoptosis Cancer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albayrak T, Scherhammer V, Schoenfeld N, Braziulis E, Mund T, Bauer MK, Scheffler IE, Grimm S (2003) Mol Biol Cell 14:3082–3096PubMedCrossRefGoogle Scholar
  2. Amadori S, Fenaux P, Ludwig H, O’dwyer M, Sanz M (2005) Curr Med Res Opin 21:403–411PubMedCrossRefGoogle Scholar
  3. Antonsson B, Montessuit S, Sanchez B, Martinou JC (2001) J Biol Chem 276:11615–11623PubMedCrossRefGoogle Scholar
  4. Belzacq AS, El Hamel C, Vieira HL, Cohen I, Haouzi D, Metivier D, Marchetti P, Brenner C, Kroemer G (2001) Oncogene 20:7579–7587PubMedCrossRefGoogle Scholar
  5. Birringer M, EyTina JH, Salvatore BA, Neuzil J (2003) Br J Cancer 88:1948–1955PubMedCrossRefGoogle Scholar
  6. Borrello S, De Leo ME, Galeotti T (1993) Mol Aspects Med 14:253–258PubMedCrossRefGoogle Scholar
  7. Cartron PF, Arokium H, Oliver L, Meflah K, Manon S, Vallette FM (2005) J Biol Chem 280:10587–10598PubMedCrossRefGoogle Scholar
  8. Cory S, Adams JM (2002) Nat Rev Cancer 2:647–656PubMedCrossRefGoogle Scholar
  9. Degterev A, Lugovskoy A, Cardone M, Mulley B, Wagner G, Mitchison T, Yuan J (2001) Nat Cell Biol 3:173–182PubMedCrossRefGoogle Scholar
  10. Di Cosimo S, Ferretti G, Papaldo P, Carlini P, Fabi A, Cognetti F (2003) Drugs Today 39:157–174PubMedCrossRefGoogle Scholar
  11. Don AS, Kisker O, Dilda P, Donoghue N, Zhao X, Decollogne S, Creighton B, Flynn E, Folkman J, Hogg PJ (2003) Cancer Cell 3:497–509PubMedCrossRefGoogle Scholar
  12. Dong LF, Wang XF, Zhao Y, Tomasetti M, Wu K, Neuzil J (2006) Cancer Ther 4:35–46Google Scholar
  13. Fantin VR, Leder P (2006) Oncogene 25:4787–4797PubMedCrossRefGoogle Scholar
  14. Freeman R, Neuzil J (2006) FEBS Lett 580:2671–2676PubMedCrossRefGoogle Scholar
  15. Galluzzi L, Larochette N, Zamzami N, Kroemer G (2006) Oncogene 25:4812–4830PubMedCrossRefGoogle Scholar
  16. Gelinas C, White E (2005) Genes Dev 19:1263–1268PubMedCrossRefGoogle Scholar
  17. Geschwind JF, Ko YH, Torbenson MS, Magee C, Pedersen PL (2002) Cancer Res 62:3909–3913PubMedGoogle Scholar
  18. Gottlieb E, Tomlinson IP (2005) Nat Rev Cancer 5:857–866PubMedCrossRefGoogle Scholar
  19. Ishii T, Yasuda K, Akatsuka A, Hino O, Hartman PS, Ishii N (2005) Cancer Res 65:203–209PubMedGoogle Scholar
  20. James AM, Cocheme HM, Smith RA, Murphy MP (2005) J Biol Chem 280:21295–21312PubMedCrossRefGoogle Scholar
  21. Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova II, Zhao Q, Zou M, Di P, Svistunenko DA, Kurnikov IV, Borisenko GG (2005) Nat Chem Biol 1:223–232PubMedCrossRefGoogle Scholar
  22. Kang YH, Lee E, Choi MK, Ku JL, Kim SH, Park YG, Lim SJ (2004) Int J Cancer 112:385–392PubMedCrossRefGoogle Scholar
  23. Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP (2001) J Biol Chem 276:4588–4596PubMedCrossRefGoogle Scholar
  24. Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, Pedersen PL, Biochem Biophys Res Commun 324:269–275Google Scholar
  25. Kogure K, Hama S, Manabe S, Tokumura A, Fukuzawa K (2002) Cancer Lett 186:151–156PubMedCrossRefGoogle Scholar
  26. Kogure K, Morita M, Nakashima S, Hama S, Tokumura A, Fukuzawa K (2001) Biochim Biophys Acta 1528:25–30PubMedGoogle Scholar
  27. Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH (2000) Cell Death Differ 7:1166–1173PubMedCrossRefGoogle Scholar
  28. Leonard JV, Schapira AH (2000) Lancet 355:389–394PubMedCrossRefGoogle Scholar
  29. Li J, Lee B, Lee AS (2006) J Biol Chem 281:7260–7270PubMedCrossRefGoogle Scholar
  30. Makin GW, Corfe BM, Griffiths GJ, Thistlethwaite A, Hickman JA, Dive C (2001) EMBO J 20:6306–6315PubMedCrossRefGoogle Scholar
  31. McLennan HR, Degli-Esposti M (2000) J Bioenerg Biomembr 32:153–162PubMedCrossRefGoogle Scholar
  32. Ming L, Wang P, Bank A, Yu J, Zhang L (2006) J Biol Chem 281:16034–16042PubMedCrossRefGoogle Scholar
  33. Neuzil J, Schröder A, von Hundelshausen P, Zernecke A, Weber T, Gellert N, Weber C (2001) Biochemistry 40:4686–4692PubMedCrossRefGoogle Scholar
  34. Neuzil J, Tomasetti M, Mellick AS, Alleva R, Salvatore BA, Birringer B, Fariss MW (2004) Curr Cancer Drug Targets 4:267–284CrossRefGoogle Scholar
  35. Neuzil J, Wang XF, Dong LF, Low P, Ralph SJ (2006) FEBS Lett 580:5125–5129PubMedCrossRefGoogle Scholar
  36. Neuzil J, Weber T, Gellert N, Weber C (2001) Br J Cancer 84:87–89PubMedCrossRefGoogle Scholar
  37. Neuzil J, Weber T, Schröder A, Lu M, Ostermann G, Gellert N, Mayne GC, Olejnicka B, Nègre-Salvayre A, Sticha M, Coffey RJ, Weber C (2001) FASEB J 15:403–415PubMedCrossRefGoogle Scholar
  38. Newmeyer DD, Ferguson-Miller S (2003) Cell 112:481–490PubMedCrossRefGoogle Scholar
  39. O’Neill J, Manion M, Schwartz P, Hockenbery DM (2004) Biochim Biophys Acta 1705:43–51PubMedGoogle Scholar
  40. Oostveen FG, Au HC, Meijer PJ, Scheffler IE (1995) J Biol Chem 270:26104–26108PubMedCrossRefGoogle Scholar
  41. Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S (2002) Proc Natl Acad Sci USA 99:1259–1263PubMedCrossRefADSGoogle Scholar
  42. Ottino P, Duncan JR (1997) Free Radic Biol Med 22:1145–1151PubMedCrossRefGoogle Scholar
  43. Patenaude A, Ven Murthy MR, Mirault ME (2004) J Biol Chem 279:27302–27314PubMedCrossRefGoogle Scholar
  44. Pelicano H, Martin DS, Xu RH, Huang P (2006) Oncogene 25:633–4646CrossRefGoogle Scholar
  45. Petrosillo G, Ruggiero FM, Pistolese M, Paradies G (2001) FEBS Lett 509:435–438PubMedCrossRefGoogle Scholar
  46. Raha S, Robinson BH (2000) Trends Biochem Sci 25:502–508PubMedCrossRefGoogle Scholar
  47. Ralph SJ, Dong LF, Low P, Lawen A, Neuzil J (2006) Recent Patent Reviews Anti-Cancer Drug Discovery (in press)Google Scholar
  48. Ravagnan L, Marzo I, Costantini P, Susin SA, Zamzami N, Petit PX, Hirsch F, Goulbern M, Poupon MF, Miccoli L, Xie Z, Reed JC, Kroemer G (1999) Oncogene 18:2537–2546PubMedCrossRefGoogle Scholar
  49. Reed JC (2006) Cell Death Differ 13:1378–1386PubMedCrossRefGoogle Scholar
  50. Reed JC, Pellecchia M (2005) Blood 106:408–418PubMedCrossRefGoogle Scholar
  51. Robey RB, Hay N (2005) Cell Cycle 4:654–658PubMedGoogle Scholar
  52. Rotem R, Heyfets A, Fingrut O, Blickstein D, Shaklai M, Flescher E (2005) Cancer Res 65:1984–1993PubMedCrossRefGoogle Scholar
  53. Schumacker PT (2006) Cancer Cell 10:175–176PubMedCrossRefGoogle Scholar
  54. Seo BB, Kitajima-Ihara T, Chan EK, Scheffler IE, Matsuno-Yagi A, Yagi T (1998) Proc Natl Acad Sci USA 95:9167–9171PubMedCrossRefADSGoogle Scholar
  55. Shiau CW, Huang JW, Wang DS, Weng JR, Yang CC, Lin CH, Li C, Chen CS (2006) J Biol Chem 281:11819–11825PubMedCrossRefGoogle Scholar
  56. Stapelberg M, Gellert N, Swettenham E, Tomasetti M, Witting PK, Procopio A, Neuzil J (2005) J Biol Chem 280, 25369–25376PubMedCrossRefGoogle Scholar
  57. Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D, Bartlam M, Rao Z (2005) Cell 121:1043–1057PubMedCrossRefGoogle Scholar
  58. Sun Y, Oberley LW (1996) Free Radic Biol Med 21:335–348PubMedCrossRefGoogle Scholar
  59. Swettenham E, Witting PK, Salvatore BA, Neuzil J (2005) J Neurochem 94:1448–1456PubMedCrossRefGoogle Scholar
  60. Tomasetti M, Andera L, Alleva R, Borghi B, Neuzil J, Procopio A (2006) FEBS Lett 580:1925–1931PubMedCrossRefGoogle Scholar
  61. Tomic-Vatic A, EyTina JH, Chapmann JM, Mahdavian E, Neuzil J, Salvatore BA (2005) Int J Cancer 117:118–193CrossRefGoogle Scholar
  62. Wang XF, Dong LF, Zhao Y, Tomasetti M, Wu K, Neuzil J (2006) Mol Nutr Food Res 50:675–685PubMedCrossRefGoogle Scholar
  63. Wang K, Gross A, Waksman G, Korsmeyer SJ (1998) Mol Cell Biol 18:6083–6089PubMedGoogle Scholar
  64. Weber T, Dalen H, Andera L, Nègre-Salvayre A, Augé N, Sticha M, Loret A, Terman A, Witting PK, Higuchi M, Plasilova M, Zivny J, Gellert N, Weber C, Neuzil J (2003) Biochemistry 42:4277–4291PubMedCrossRefGoogle Scholar
  65. Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, Adams JM, Huang DC (2005) Genes Dev 19:1294–1305PubMedCrossRefGoogle Scholar
  66. Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ (1997) J Cell Biol 139:1281–1292PubMedCrossRefGoogle Scholar
  67. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P (2005) Cancer Res 65:613–621PubMedCrossRefGoogle Scholar
  68. Yin H, Lee GI, Sedey KA, Kutzki O, Park HS, Orner BP, Ernst JT, Wang HG, Sebti SM, Hamilton AD (2005) J Am Chem Soc 127:10191–10196PubMedCrossRefGoogle Scholar
  69. Yoo MH, Xu XM, Carlson BA, Gladyshev VN, Hatfield DL (2006) J Biol Chem 281:13005–13008PubMedCrossRefGoogle Scholar
  70. Yu W, Sanders BG, Kline K (2003) Cancer Res 63:2483–2491PubMedGoogle Scholar
  71. Zha A, Aime-Sempe C, Sato T, Reed JC (1996) J Biol Chem 271:7440–7444PubMedCrossRefGoogle Scholar
  72. Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH (2004) J Biol Chem 279:34682–34690PubMedCrossRefGoogle Scholar
  73. Zhivotovsky B, Orrenius S, Brustugun OT, Doskeland SO (1998) Nature 391:449–450PubMedCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jiri Neuzil
    • 1
    • 2
    • 7
  • Jeffrey C. Dyason
    • 3
  • Ruth Freeman
    • 1
  • Lan-Feng Dong
    • 1
  • Lubomir Prochazka
    • 4
  • Xiu-Fang Wang
    • 1
  • Immo Scheffler
    • 5
  • Stephen J. Ralph
    • 6
  1. 1.Apoptosis Research Group, School of Medical ScienceGriffith UniversitySouthportAustralia
  2. 2.Molecular Therapy Group, Institute of Molecular GeneticsAcademy of Sciences of the Czech RepublicPragueCzech Republic
  3. 3.Institute for GlycomicsGriffith UniversitySouthportAustralia
  4. 4.Veterinary Research InstituteBrnoCzech Republic
  5. 5.Division of Biology, Molecular Biology SectionUniversity of CaliforniaSan DiegoUSA
  6. 6.Genomic Research CentreGriffith UniversitySouthportAustralia
  7. 7.Apoptosis Research Group, Heart Foundation Research Centre, Griffith Institute for Health and Medical Research, School of Medical ScienceGriffith University Gold Coast CampusSouthportAustralia

Personalised recommendations