Journal of Bioenergetics and Biomembranes

, Volume 38, Issue 5–6, pp 327–333

Carbohydrate restriction does not change mitochondrial free radical generation and oxidative DNA damage

Original Paper

Abstract

Many previous investigations have consistently reported that caloric restriction (40%), which increases maximum longevity, decreases mitochondrial reactive species (ROS) generation and oxidative damage to mitochondrial DNA (mtDNA) in laboratory rodents. These decreases take place in rat liver after only seven weeks of caloric restriction. Moreover, it has been found that seven weeks of 40% protein restriction, independently of caloric restriction, also decrease these two parameters, whereas they are not changed after seven weeks of 40% lipid restriction. This is interesting since it is known that protein restriction can extend longevity in rodents, whereas lipid restriction does not have such effect. However, before concluding that the ameliorating effects of caloric restriction on mitochondrial oxidative stress are due to restriction in protein intake, studies on the third energetic component of the diet, carbohydrates, are needed. In the present study, using semipurified diets, the carbohydrate ingestion of male Wistar rats was decreased by 40% below controls without changing the level of intake of the other dietary components. After seven weeks of treatment the liver mitochondria of the carbohydrate restricted animals did not show changes in the rate of mitochondrial ROS production, mitochondrial oxygen consumption or percent free radical leak with any substrate (complex I- or complex II-linked) studied. In agreement with this, the levels of oxidative damage in hepatic mtDNA and nuclear DNA were not modified in carbohydrate restricted animals. Oxidative damage in mtDNA was one order of magnitude higher than that in nuclear DNA in both dietary groups. These results, together with previous ones, discard lipids and carbohydrates, and indicate that the lowered ingestion of dietary proteins is responsible for the decrease in mitochondrial ROS production and oxidative damage in mtDNA that occurs during caloric restriction.

Keywords

Carbohydrates Dietary restriction Free radicals Mitochondria DNA damage Aging Oxidative stress 

Abbreviations

8-oxodG:

8-oxo-7,8-dihydro-2’-deoxyguanosine

CR:

caloric restriction

mtDNA:

mitochondrial DNA

nDNA:

nuclear DNA

ROS:

reactive oxygen species

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1 Archer VE (2003) Med Hypoteses 60:924–929CrossRefGoogle Scholar
  2. 2.
    2 Asunción JG, Millan A, Pla R, Bruseghini I, Esteras A, Pallardo FV, Sastre J, Viña J (1996) FASEB J 10:333–338Google Scholar
  3. 3.
    3 Barger JL, Walford RL, Weindruch R (2003) Exp Gerontol 38:1343–1351CrossRefGoogle Scholar
  4. 4.
    4 Barja G (2002) J Bioenerg Biomembr 34:227–233CrossRefGoogle Scholar
  5. 5.
    5 Barja G (2004a) Free radicals and aging. Trends Neurosci 27:595–600CrossRefGoogle Scholar
  6. 6.
    6 Barja G (2004b) Biol Rev 79:235–251CrossRefGoogle Scholar
  7. 7.
    7 Barzilai N, Gabriely I (2001) J Nutr 131:903S–906SGoogle Scholar
  8. 8.
    8 Beckman KB, Ames BN (1998) Physiol Rev 78:547–581Google Scholar
  9. 9.
    9 Dalderup LM, Visser W (1969) Nature 222:1050–1052CrossRefGoogle Scholar
  10. 10.
    10 Doi SQ, Rasaiah S, Tack I, Mysore J, Kopchick JJ, Moore J, Hirszel P, Striker LJ, Striker GE (2001) Am J Nephrol 21:331–339CrossRefGoogle Scholar
  11. 11.
    11 Gredilla R, Barja G, López-Torres M (2001a) J Bioenerg Biomembr 33:279–287CrossRefGoogle Scholar
  12. 12.
    12 Gredilla R, Sanz A, López-Torres ML, Barja G (2001b) FASEB J. 15, 1589–1591Google Scholar
  13. 13.
    13 Gredilla G, Barja G (2005) The role of oxidative stress in relation to caloric restriction and longevity. Endocrinol 146:3713–3717CrossRefGoogle Scholar
  14. 14.
    14 Iwasaki K, Gleiser CA, Masoro EJ, McMahan CA, Seo EJ, Yu BP (1988) J Gerontol 43:B13–B21Google Scholar
  15. 15.
    15 Khorakova M, Deil Z, Khausman D, Matsek K (1990) Fiziol Zh 36:16–21Google Scholar
  16. 16.
    16 Kubo C, Johnson BC, Gajjar A, Good RA (1987) J Nutr 117:1129–1135Google Scholar
  17. 17.
    17 Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla T (2005) Science 5:71–79Google Scholar
  18. 18.
    18 Latorre A, Moya A, Ayala A (1986) PNAS USA 83:8649–8653CrossRefGoogle Scholar
  19. 19.
    19 Loft S, Poulsen HE (1999) Methods Enzymol 300:166–184CrossRefGoogle Scholar
  20. 20.
    20 López-Torres M, Gredilla R, Sanz A, Barja G (2002) Free Rad Biol Med 32:882–889CrossRefGoogle Scholar
  21. 21.
    21 Maeda H, Gleiser CA, Masoro EJ, Murata I, maman CA, Yu BP (1985) J Gerontol 40:671–688Google Scholar
  22. 22.
    22 Mair W, Piper MD, Partridge L (2005) PloS Biol 3:1305–1311CrossRefGoogle Scholar
  23. 23.
    23 Masoro EJ (1990) Proc Soc Exp Biol Med 193:31–34Google Scholar
  24. 24.
    24 Masoro EJ (2000) Caloric restriction and aging: an update. Exper Gerontol 35:299–305CrossRefGoogle Scholar
  25. 25.
    25 Mlekusch W, Lamprecht M, Ottl, K, Tillian M, Reibnegger G (1996) Mech Ageing Dev 92:43–51CrossRefGoogle Scholar
  26. 26.
    26 Murtagh-Mark CM, Reiser KM, Harris R Jr, McDonald RB (1995) J Gerontol 50A:B148–B154Google Scholar
  27. 27.
    27 Muurling M, Jong MC, Mensink RP, Hornstra G, Dahlmans VEH, Hanno P, Voshol PH, Havekes LM (2002) Metabolism 51:695–701CrossRefGoogle Scholar
  28. 28.
    28 Orentreich N, Matias JR, DeFelice A, Zimmerman JA (1993) J Nutr 123:269–274Google Scholar
  29. 29.
    29 Pamplona R, Barja G (2006) Biochim Biophys Acta Bioenerg (In press)Google Scholar
  30. 30.
    30 Piper MD, Mair W, Partridge L (2005) J Gerontol A 60:549–555Google Scholar
  31. 31.
    31 Ramsey JJ, Hagopian K, Kenny TM, Koomson EK, Bevilacqua L, Weindruch R, Harper ME (2004) Am J Physiol 286:E31–E40Google Scholar
  32. 32.
    32 Richardson A, Liu F, Adamo ML, Van Remmen H, Nelson JF (2004) Best Pract Res Clin Endocrinol Metab 18:393–406CrossRefGoogle Scholar
  33. 33.
    33 Richie JP Jr, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA (1994) FASEB J 8:1302–1307Google Scholar
  34. 34.
    34 Rodrigues MAM, Sanchez-Negrette M, Mantovani MS, Santana LS, Angeleli AYO, Montenegro MR, de Camargo JLV (1991) Food Chem Toxicol 29:757–764CrossRefGoogle Scholar
  35. 35.
    35 Ross MH (1976) In: Winick M (ed) Nutrition and Aging. Wiley, New York, pp 43–57Google Scholar
  36. 36.
    36 Sanz A, Caro P, Barja G (2004) J Bioenerg Biomembr 36:545–552CrossRefGoogle Scholar
  37. 37.
    37 Sanz A, Caro P, Ibañez J, Gómez J, Gredilla R, Barja G (2005a) J Bioenerg Biomembr 37:83–90CrossRefGoogle Scholar
  38. 38.
    38 Sanz A, Gredilla R, Pamplona R, Portero-Otín M, Vara E, Tresguerres JAF., Barja G (2005b) Biogerontol 6:15–26CrossRefGoogle Scholar
  39. 39.
    39 Sanz A, Caro P, Gómez J, Barja G (2006a) Ann NY Acad Sci (In press)Google Scholar
  40. 40.
    40 Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G (2006b) FASEB J (In press)Google Scholar
  41. 41.
    41 Shimokawa I, Higami Y, Yu BP, Masoro EJ, Ikeda T (1996) Aging Clin Exp Res 8:254–262Google Scholar
  42. 42.
    42 Yamaki K, Ide T, Takano-Ishikawa Y, Shinohara K (2005) Biosci Biotechnol Biochem 69:13–18CrossRefGoogle Scholar
  43. 43.
    43 Youngman LD, Park JYK, Ames BN (1992) PNAS USA 89:9112–9116CrossRefGoogle Scholar
  44. 44.
    44 Zimmerman JA, Malloy V, Krajcik R, Orentreich N (2003) Exp Gerontol 38:47–52CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Animal Physiology-II, Faculty of Biological SciencesComplutense UniversityMadridSpain
  2. 2.Departamento de Fisiología Animal-II, Facultad de Ciencias BiológicasUniversidad ComplutenseMadridSpain

Personalised recommendations