Journal of Bioenergetics and Biomembranes

, Volume 37, Issue 6, pp 411–413 | Cite as

Structure and Mechanism of Vacuolar Na+-Translocating ATPase From Enterococcus hirae

Article

 

V-type Na+-ATPase from Entercoccus hirae consists of nine kinds of subunits (NtpA3, B3, C1, D1, E1−3, F1−3, G1, I1, and K10) which are encoded by the ntp operon. The amino acid sequences of the major subunits, A, B, and K (proteolipid), were highly similar to those of A, B, and c subunits of eukaryotic V-ATPases, and those of β, α, and c subunits of F-ATPases. We modeled the A and B subunits by homology modeling using the structure of β and α subunits of F-ATPase, and obtained an atomic structure of NtpK ring by X-ray crystallography. Here we briefly summarize our current models of the whole structure and mechanism of the E. hirae V-ATPase.

Key Words

Na+-ATPase vacuolar ATPase Enterococcus hirae membrane protein crystal structure Na+ binding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dimroth, P., Matthey, U., and Kaim, G. (2000). Biochim. Biophys. Acta. 1459, 506–513.CrossRefGoogle Scholar
  2. Drory, O., Frolow, F., and Nelson, N. (2004). EMBO Rep. 12, 1148–1152.CrossRefGoogle Scholar
  3. Hosaka, T., Murata, T., Kakinuma, Y., and Yamato, I. (2004). Biosci. Biotechnol. Biochem. 68, 293–299.CrossRefGoogle Scholar
  4. Iwata, M., Imamura, H., Stambouli, E., Ikeda, C., Tamakoshi, M., Nagata, K., Makyio, H., Hankamer, B., Barber, J., Yoshida, M., Yokoyama, K., and Iwata, S. (2004). Proc. Natl. Acad. Sci. U.S.A. 101, 59–64.Google Scholar
  5. Kakinuma, Y., Yamato, I., and Murata, T. (1999). J. Bioenerg. Biomembr. 31, 7–14.CrossRefGoogle Scholar
  6. Kawano, M., Igarashi, K., Yamato, I., and Kakinuma, Y. (2002). J. Biol. Chem. 277, 24405–24410.CrossRefGoogle Scholar
  7. Murata, T., Takase, K., Yamato, I., Igarashi, K., and Kakinuma, Y. (1999). J Biochem (Tokyo). 125, 414–421.Google Scholar
  8. Murata, T., Takase, K., Yamato, I., Igarashi, K., and Kakinuma, Y. (1997). J. Biol. Chem. 272, 24885–24890.CrossRefGoogle Scholar
  9. Murata, T., Yamato, I., Kakinuma, Y., Leslie, A. G., and Walker, J. E. (2005). Science 308, 654–659; published online 31 March 2005 (10.1126/science. 1110064).Google Scholar
  10. Murata, T., Yoshikawa, Y., Hosaka, T., Takase, K., Kakinuma, Y., Yamato, I., and Kikuchi, T. (2002). J. Biochem. (Tokyo). 132, 789–794.Google Scholar
  11. Sagermann, M., Stevens, T. H., and Matthews, B. W. (2001). Proc. Natl. Acad. Sci. U.S.A. 98, 7134–7139.Google Scholar
  12. Stevens, T. H., and Forgac, M. (1997). Annu. Rev. Cell Dev. Biol. 13, 779–808.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Takeshi Murata
    • 1
  • Ichiro Yamato
    • 2
  • Yoshimi Kakinuma
    • 3
  1. 1.RIKEN Genomic Sciences CenterYokohamaJapan
  2. 2.Department of Biological Science and TechnologyTokyo University of ScienceNodaJapan
  3. 3.Laboratory of Molecular Physiology and Genetics, Faculty of AgricultureEhime UniversityMatsuyamaJapan

Personalised recommendations