Journal of Bioenergetics and Biomembranes

, Volume 37, Issue 6, pp 399–403 | Cite as

Close-Up and Genomic Views of the Yeast Vacuolar H+-ATPase

Article

 

The yeast V-ATPase has emerged as an excellent model for other eukaryotic V-ATPases. In this review, recent biochemical and genomic studies of the yeast V-ATPase are described, with a focus on: 1) the role of V1 subunit H in coupling ATP hydrolysis and proton pumping and 2) identification of the full set of yeast haploid deletion mutants that exhibit the pH and calcium-sensitive growth characteristic of loss of V-ATPase activity. The combination of “close-up” biochemical views of V-ATPase structure and mechanism and “geomic” views of its functional reach promises to provide new insights into the physiological of V-ATPases.

Key Words

vacuole yeast ATPase proton pump genomic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksimentiev, A., Balabin, I. A., Fillingame, R. H., and Schulten, K. (2004). Biophys. J. 86, 1332–1344.CrossRefGoogle Scholar
  2. Bowman, B. J., and Bowman, E. J. (2002). J. Biol. Chem. 277, 3965–3972.CrossRefGoogle Scholar
  3. Cowles, C. R., Emr, S. D., and Horazdovsky, B. F. (1994). J. Cell Sci. 107, 3449–3459.Google Scholar
  4. Cross, R. L. (2000). Biochim. Biophys. Acta 1458, 270–275.CrossRefGoogle Scholar
  5. Curtis, K. K., and Kane, P. M. (2001). J. Biol. Chem. 20, 20.Google Scholar
  6. Davis-Kaplan, S. R., Ward, D. M., Shiflett, S. L., and Kaplan, J. (2004). J. Biol. Chem. 279, 4322–4329. (Epub 2003 Nov 4321.)CrossRefGoogle Scholar
  7. Dunn, S. D., McLachlin, D. T., and Revington, M. (2000). Biochim. Biophys. Acta 1458, 356–363.CrossRefGoogle Scholar
  8. Feng, Y., and Forgac, M. (1992). J. Biol. Chem. 267, 5817–5822.Google Scholar
  9. Fillingame, R. H., Angevine, C. M., and Dmitriev, O. Y. (2002). Biochim. Biophys. Acta 1555, 29–36.CrossRefGoogle Scholar
  10. Garrett-Engele, P., Moilanen, B., and Cyert, M. S. (1995). Mol. Cell Biol. 15, 4103–4114.Google Scholar
  11. Hill, K., and Cooper, A. A. (2000). Embo. J. 19, 550–561.CrossRefGoogle Scholar
  12. Hirata, T., Iwamoto-Kihara, A., Sun-Wada, G. H., Okajima, T., Wada, Y., and Futai, M. (2003). J. Biol. Chem. 278, 23714–23719.CrossRefGoogle Scholar
  13. Ho, M. N., Hirata, R., Umemoto, N., Ohya, Y., Takatsuki, A., Stevens, T. H., and Anraku, Y. (1993). J. Biol. Chem. 268, 18286– 18292.Google Scholar
  14. Hunt, I. E., and Bowman, B. J. (1997). J. Bioenerg. Biomembr. 29, 533–540.CrossRefGoogle Scholar
  15. Huss, M., Ingenhorst, G., Konig, S., Gassel, M., Drose, S., Zeeck, A., Altendorf, K., and Wieczorek, H. (2002). J. Biol. Chem. 277, 40544–40548.CrossRefGoogle Scholar
  16. Imamura, H., Nakano, M., Noji, H., Muneyuki, E., Ohkuma, S., Yoshida, M., and Yokoyama, K. (2003). Proc. Natl. Acad. Sci. USA 100, 2312–2315.CrossRefGoogle Scholar
  17. Kane, P. M. (1995). J. Biol. Chem. 270, 17025–17032.Google Scholar
  18. Kane, P. M. (2000). FEBS Lett. 469, 137–141.CrossRefGoogle Scholar
  19. Kane, P. M., and Smardon, A. M. (2003). J. Bioenerg. Biomembr. 35, 313–321.CrossRefGoogle Scholar
  20. Kellis, M., Patterson, N., Endrizzi, M., Birren, B., and Lander, E. S. (2003). Nature 423, 241–254.CrossRefGoogle Scholar
  21. Leng, X. H., Nishi, T., and Forgac, M. (1999). J. Biol. Chem. 274, 14655–14661.CrossRefGoogle Scholar
  22. Lesuisse, E., Knight, S. A., Courel, M., Santos, R., Camadro, J. M., and Dancis, A. (2005). Genetics 169, 107–122.CrossRefGoogle Scholar
  23. Liu, M., Tarsio, M., Charsky, C. M., and Kane, P. M. (2005). J. Biol. Chem. 280, 36978–36985.CrossRefGoogle Scholar
  24. Ludwig, J., Kerscher, S., Brandt, U., Pfeiffer, K., Getlawi, F., Apps, D. K., and Schagger, H. (1998). J. Biol. Chem. 273, 10939– 10947.CrossRefGoogle Scholar
  25. Manolson, M. F., Wu, B., Proteau, D., Taillon, B. E., Roberts, B. T., Hoyt, M. A., and Jones, E. W. (1994). J. Biol. Chem. 269, 14064– 14074.Google Scholar
  26. Margolles-Clark, E., Tenney, K., Bowman, E. J., and Bowman, B. J. (1999). J. Bioenerg. Biomembr. 31, 29–37.CrossRefGoogle Scholar
  27. Merzendorfer, H., Huss, M., Schmid, R., Harvey, W. R., and Wieczorek, H. (1999). J. Biol. Chem. 274, 17372–17378.CrossRefGoogle Scholar
  28. Murata, T., Yamato, I., Kakinuma, Y., Leslie, A. G., and Walker, J. E. (2005). Science 308, 654–659.CrossRefGoogle Scholar
  29. Nelson, H., and Nelson, N. (1990). Proc. Natl. Acad. Sci. USA 87, 3503–3507.Google Scholar
  30. Nishi, T., and Forgac, M. (2002). Nat. Rev. Mol. Cell. Biol. 3, 94– 103.CrossRefGoogle Scholar
  31. Ohya, Y., Umemoto, N., Tanida, I., Ohta, A., Iida, H., and Anraku, Y. (1991). J. Biol. Chem. 266, 13971–13977.Google Scholar
  32. Outten, C. E., Falk, R. L., and Culotta, V. C. (2005). Biochem. J. 388, 93–101.CrossRefGoogle Scholar
  33. Parra, K. J., Keenan, K. L., and Kane, P. M. (2000). J. Biol. Chem. 275, 21761–21767.CrossRefGoogle Scholar
  34. Parsons, A. B., Brost, R. L., Ding, H., Li, Z., Zhang, C., Sheikh, B., Brown, G. W., Kane, P. M., Hughes, T. R., and Boone, C. (2004). Nat. Biotechnol. 22, 62–69.CrossRefGoogle Scholar
  35. Peterson, M. R., Burd, C. G., Emr, S. D., Peterson, M., and Cowles, C. R. (1999). Curr. Biol. 9, 159–162.CrossRefGoogle Scholar
  36. Raymond, C. K., Howald-Stevenson, I., Vater, C. A., and Stevens, T. H. (1992). Mol. Biol. Cell 3, 1389–1402.Google Scholar
  37. Sagermann, M., Stevens, T. H., and Matthews, B. W. (2001). Proc. Natl. Acad. Sci. USA 98, 7134–7139.CrossRefGoogle Scholar
  38. Sambade, M., Alba, M., Smardon, A. M., West, R. W., and Kane, P. M. (2005). Genetics 170, 1539–1551.CrossRefGoogle Scholar
  39. Sambade, M., and Kane, P. M. (2004). J. Biol. Chem. 279, 17361– 17365.CrossRefGoogle Scholar
  40. Schu, P. V., Takegawa, K., Fry, M. J., Stack, J. H., Waterfield, M. D., and Emr, S. D. (1993). Science 260, 88–91.Google Scholar
  41. Serrano, R., Bernal, D., Simon, E., and Arino, J. (2004). J. Biol. Chem. 279, 19698–19704. (Epub 12004 Mar 19601.)CrossRefGoogle Scholar
  42. Shao, E., and Forgac, M. (2004). J. Biol. Chem. 279, 48663– 48670.CrossRefGoogle Scholar
  43. Stack, J. H., DeWald, D. B., Takegawa, K., and Emr, S. D. (1995). J. Cell. Biol. 129, 321–334.CrossRefGoogle Scholar
  44. Supekova, L., Sbia, M., Supek, F., Ma, Y., and Nelson, N. (1996). J. Exp. Biol. 199, 1147–1156.Google Scholar
  45. Tanida, I., Hasegawa, A., Iida, H., Ohya, Y., and Anraku, Y. (1995). J. Biol. Chem. 270, 10113–10119.CrossRefGoogle Scholar
  46. Venzke, D., Domgall, I., Kocher, T., Fethiere, J., Fischer, S., and Bottcher, B. (2005). J. Mol. Biol. 349, 659–669.CrossRefGoogle Scholar
  47. Wieczorek, H., Gruber, G., Harvey, W. R., Huss, M., Merzendorfer, H., and Zeiske, W. (2000). J. Exp. Biol. 203(Pt 1), 127–135.Google Scholar
  48. Wilkens, S., and Forgac, M. (2001). J. Biol. Chem. 276, 44064– 44068.CrossRefGoogle Scholar
  49. Wilkens, S., Inoue, T., and Forgac, M. (2004). J. Biol. Chem. 279, 41942–41949.CrossRefGoogle Scholar
  50. Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J. D., Bussey, H., Chu, A. M., Connelly, C., Davis, K., Dietrich, F., Dow, S. W., El Bakkoury, M., Foury, F., Friend, S. H., Gentalen, E., Giaever, G., Hegemann, J. H., Jones, T., Laub, M., Liao, H., Liebundguth, N., Lockhart, D. J., Lucau-Danila, A., Lussier, M., M'Rabet, N., Menard, P., Mittmann, M., Pai, C., Rebishung, C., Revuelta, J. L., Riles, L., Roberts, C. J., Ross-MacDonald, P., Scherens, B., Snyder, M., Sookhai-Mahadeo, S., Storms, R. K., Feronneau, S., Voet, M., Volckaert, G., Ward, T. R., Wysocki, R., Yen, G. S., Yu, K., Zimmermann, K., Phillippsen, P., Johnston, M., and Davis, R. W., (1999). Science 285, 901–906.CrossRefGoogle Scholar
  51. Zhang, Z., Charsky, C., Kane, P. M., and Wilkens, S. (2003). J. Biol. Chem. 278, 47299–47306.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuse

Personalised recommendations