Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 37, Issue 6, pp 349–357 | Cite as

Transport ATPases: Structure, Motors, Mechanism and Medicine: A Brief Overview

  • Peter L. Pedersen
Article

 

Today we know there are four different types of ATPases that operate within biological membranes with the purpose of moving many different types of ions or molecules across these membranes. Some of these ions or molecules are transported into cells, some out of cells, and some in or out of organelles within cells. These ATPases span the biological world from bacteria to eukaryotic cells and have become most simply and commonly known as “transport ATPases.” The price that each cell type pays for transport work is counted in molecules of hydrolyzed ATP, a metabolic currency that is itself regenerated by a transport ATPase working in reverse, i.e., the ATP synthase. Four major classes of transport ATPases, the P, V, F, and ABC types are now known. In addition to being involved in many different types of biological/physiological processes, mutations in these proteins also account for a large number of diseases. The purpose of this introductory article to a mini-review series on transport ATPases is to provide the reader with a very brief and focused look at this important area of research that has an interesting history and bears significance to cell physiology, biochemistry, immunology, nanotechnology, and medicine, including drug discovery. The latter involves potential applications to a whole host of diseases ranging from cancer to those that affect bones (osteoporosis), ears (hearing), eyes (macromolecular degeneration), the heart (hypercholesterolemia/cardiac arrest,), immune system (immune deficiency disease), kidney (nephrotoxicity), lungs (cystic fibrosis), pancreas (diabetes and cystic fibrosis), skin (Darier disease), and stomach (ulcers).

Key Words

Transport ATPase P-type ATPase F-type ATPase V-type ATPase ABC transporters cancer cancer therapy heart disease cystic fibrosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahams, J. B., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994). Nature (London) 370, 621–628.CrossRefGoogle Scholar
  2. Ames, G. F., and Roth, J. R. (1968). J. Bacteriol. 96, 1742–1749.Google Scholar
  3. Amzel, L. M., McKinney, M., Narayanan, P., and Pedersen, P. L. (1982). Proc. Natl. Acad. Sci. U.S.A. 79, 5852–5856.Google Scholar
  4. Amzel, L. M., and Pedersen, P. L. (1978). J. Biol. Chem. 253, 2067–2069.Google Scholar
  5. Awayn, N. H., Rosenberg, M. F., Kamis, A. B., Aleksandrov, L. A., Riordan, J. R., and Ford, R. C. (2005). Biochem. Soc. Trans. 33, 996–999.CrossRefGoogle Scholar
  6. Bianchet, M., Amzel, L. M., Hullihen, J., and Pedersen, P. L. (1998). Proc. Natl. Acad. Sci. U.S.A. 95, 11065–11070.Google Scholar
  7. Bianchet, M., Ysern, X., Hullihen, J., Pedersen, P. L., and Amzel, L. M. (1991). J. Biol. Chem. 266, 21197–21201.Google Scholar
  8. Bowman, E. J., and Bowman, B. J. (1982). J. Bacteriol. 151, 1326–1337.Google Scholar
  9. Brewer, H. B. Jr., Remaley, A. T., Neufeld, E. B., Basso, F., and Joyce, C. (2004). Arterioscler. Thomb. Vasc. Biol. 24, 1755– 1760.CrossRefGoogle Scholar
  10. Catterall, W. A., Coty, W. A., and Pedersen, P. L. (1973). J. Biol. Chem. 248, 7427–7431.Google Scholar
  11. Chang, G., and Roth, C. B. (2001). Science 293, 1793–1800.CrossRefGoogle Scholar
  12. Charnock, J. S., Rosenthal, A. S., and Post, R. L. (1963). Aust. J. Exp. Biol. Med. 41, 675–686.Google Scholar
  13. Chen, C., Ko, Y. H., Delannoy, M., Ludke, S. J., Chiu, W., and Pedersen, P. L. (2004). J. Biol. Chem. 279, 31761–31768.Google Scholar
  14. Chen, J., Lu, G., Lin, J., Davidson, A. L., and Quiocho, F. A. (2003). Mol. Cell 12, 651–661.CrossRefGoogle Scholar
  15. Dean, M., and Annilo, T. (2005). Annu. Rev. Genomics Hum. Genet. 6, 123–142.CrossRefGoogle Scholar
  16. Forgac, M. (2000). J. Exp. Biol. 203, 71–80.Google Scholar
  17. Gibbons, C., Montgomery, M. G., Leslie, A. G., and Walker, J. E. (2000). Nat. Struc. Biol. 7, 1055–1061.CrossRefGoogle Scholar
  18. Gottesman, M. M., and Ambudkar, S. (2001). J. Bioenerg. Biomembr. 33, 453–458.CrossRefGoogle Scholar
  19. Gresser, M. J., Meyers, J., and Boyer, P. D. (1982). J. Biol. Chem. 257, 12030–12038.Google Scholar
  20. Higgins, C. F. (1992). Annu. Rev. Cell Biol. 8, 67–113.CrossRefGoogle Scholar
  21. Higgins, C. F., Hiles, I. D., Salmond, G. P., Gill, D. R., Downie, J. A., Evans, I. J., Holland, I. B., Gray, L., Buckel, S. D., Bell, A. W., and Hermodson, M. A. (1986). Nature 323, 448–450.CrossRefGoogle Scholar
  22. Hirata, T., Iwamoto-Kihara, A., Sun-Wada, G. H., Okajima, T., Wada, Y., and Futai, M. (2003). J. Biol. Chem. 278, 23714– 23719.CrossRefGoogle Scholar
  23. Hyde, S. C., Emsley, P., Hartshorn, M., Mimmack, M. M., Gileadi, U., Pearce, S. R., Gallagher, M. P., Gill, D. R., Hubbard, R. E., and Higgins, C. F., (1990). Nature (London) 346, 362– 365.CrossRefGoogle Scholar
  24. Imamura, H., Nakano, M., Noji, H., Muneyuki, E., Ohkuma, S., Yoshida, M., and Yokoyama, K. (2003). Proc. Natl. Acad. Sci. 100, 2312–2315.CrossRefGoogle Scholar
  25. Ko, Y. H., Delannoy, M., Hullihen, J., Chiu, W., and Pedersen, P. L. (2003). J. Biol. Chem. 278, 12305–12309.CrossRefGoogle Scholar
  26. Ko, Y. H., Smith, B. L., Wang, Y., Pomper, M. G., Rini, D. A., Torbenson, M. S., Hullihen, J., and Pedersen, P. L. (2004). Biochem. Biophys. Commun. 324, 269–275.CrossRefGoogle Scholar
  27. Langheim, S., Yu, L., von Bergmann, K., Lutjohann, D., Xu, F., Hobbs, H. H., and Cohen, J. (2005). J. Lipid Res. 46, 1732– 1738.CrossRefGoogle Scholar
  28. Lee, J. Y., and Parks, J. S. (2005). Curr. Opin. Lipidol. 16, 19– 25.CrossRefGoogle Scholar
  29. Locher, K. P. (2004). Curr. Opin. Struct. Biol. 14, 426–431.CrossRefGoogle Scholar
  30. Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K., Jr. (1997). Nature 386, 299–302.CrossRefGoogle Scholar
  31. Ohsumi, Y., and Anraku, Y. (1981). J. Biol. Chem. 256, 2079–2082.Google Scholar
  32. Pedersen, P. L., and Carafoli, E. (1987a). Trends in Biochem. Sci. 12, 146–150.CrossRefGoogle Scholar
  33. Pedersen, P. L., and Carafoli, E. (1987b). Trends in Biochem. Sci. 12, 186–189.CrossRefGoogle Scholar
  34. Pedersen, P. L., Ko, Y. H., and Hong, S. (2000). J. Bioenerg. Biomemb. 32, 423–432.CrossRefGoogle Scholar
  35. Pedersen, P. L. (2002). J. Bioenerg. Biomemb. 34, 327–332.CrossRefGoogle Scholar
  36. Post, R. L., and Jolly, P. C. (1957). Biochim. Biophys. Acta 25, 118– 128.CrossRefGoogle Scholar
  37. Post, R. L., Sen, A. K., and Rosenthal, A. S. (1965). J. Biol. Chem. 240, 1437–1445.Google Scholar
  38. Pullman, M. E., Penefsky, H., and Racker, E. (1958). Arch. Biochem. Biophys. 76, 227–230.CrossRefGoogle Scholar
  39. Stock, D., Gibbons, C., Arechaga, I., Leslie, A. G., and Walker, J. E. (2000). Curr. Opin. Struct. Biol. 10, 672–679.Google Scholar
  40. Stock, D., Leslie, A. G., and Walker, J. E. (1999). Science 286, 1700–1705.CrossRefGoogle Scholar
  41. Skou, J. C. (1957). Biochim. Biophys. Acta 23, 394–401.CrossRefGoogle Scholar
  42. Skou, J. C., and Esmann, M. (1992). J. Bioenerg. Biomemb. 24, 249– 261.Google Scholar
  43. Toyoshima, C., and Inesi, G. (2004). Ann. Rev. Biochem. 73, 269–292.CrossRefGoogle Scholar
  44. Toyoshima, C., and Misutani, T. (2004). Nature 430, 529–535.CrossRefGoogle Scholar
  45. Toyoshima, C., Nakasako, M., Nomura, H., and Ogawa, H. (2000). Nature 405, 647–655.CrossRefGoogle Scholar
  46. Weber, J., and Senior, A. E. (2003). FEBS Lett. 545, 61–70.CrossRefGoogle Scholar
  47. Wilkens, S., Zhang, Z., and Zheng, Y. (2005). Micron 36, 109– 126.CrossRefGoogle Scholar
  48. Yokoyama, K., Nakano, M., Imamura, H., Yoshida, M., and Tamakoshi, M. (2003). J. Biol. Chem. 278, 24255–24258.Google Scholar
  49. Yoshida, M., Muneyuhi, E., and Hisabori, T. (2001). Nat. Rev. Mol. Cell Biol. 2, 669–677.CrossRefGoogle Scholar
  50. Yu, L., Gupta, S., Xu, F., Liverman, A. D., Moschetta, A., Mangelsdorf, D. J., Repa, J. J., Hobbs, H. H., and Cohen, J. C. (2004). J. Biol. Chem. 280, 8742–8747.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Biological ChemistryJohns Hopkins University, School of MedicineBaltimore

Personalised recommendations