Journal of Bioenergetics and Biomembranes

, Volume 37, Issue 5, pp 307–317

ANT2 Isoform Required for Cancer Cell Glycolysis

  • Arnaud Chevrollier
  • Dominique Loiseau
  • Béatrice Chabi
  • Gilles Renier
  • Olivier Douay
  • Yves Malthièry
  • Georges Stepien
Article

Abstract

The three adenine nucleotide translocator ({ANT1} to {ANT3}) isoforms, differentially expressed in human cells, play a crucial role in cell bioenergetics by catalyzing ADP and ATP exchange across the mitochondrial inner membrane. In contrast to differentiated tissue cells, transformed cells, and their ρ0 derivatives, i.e. cells deprived of mitochondrial DNA, sustain a high rate of glycolysis. We compared the expression pattern of {ANT} isoforms in several transformed human cell lines at different stages of the cell cycle. The level of {ANT2} expression and glycolytic ATP production in these cell lines were in keeping with their metabolic background and their state of differentiation. The sensitivity of the mitochondrial inner membrane potential (Δψ) to several inhibitors of glycolysis and oxidative phosphorylation confirmed this relationship. We propose a new model for ATP uptake in cancer cells implicating the {ANT2} isoform, in conjunction with hexokinase II and the β subunit of mitochondrial ATP synthase, in the Δψ maintenance and in the aggressiveness of cancer cells.

Keywords

Carcinogenesis mitochondria glycolysis adenine nucleotide translocator. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amiri, H., Karlberg, O., and Andersson, S. E. (2003). J. Mol. Evol. 56, 137–150.CrossRefGoogle Scholar
  2. Balasubramanian, B., Lowry, C. V., and Zitomer, R. S. (1993). Mol. Cell. Biol. 13, 6071–6078.Google Scholar
  3. Barath, P., Albert-Fournier, B., Luciakova, K., and Nelson, B. D. (1999). J. Biol. Chem. 274, 3378–3384.CrossRefGoogle Scholar
  4. Battini, R., Ferrari, S., Kaczmarek, L., Calabretta, B., Chen, S. T., and Baserga, R. (1987). J. Biol. Chem. 262, 4355–4359.Google Scholar
  5. Bauer, M. K., Schubert, A., Rocks, O., and Grimm, S. (1999). J. Cell. Biol. 147, 1493–1502.CrossRefGoogle Scholar
  6. Buchet, K., and Godinot, C. (1998). J. Biol. Chem. 273, 22983–22989.CrossRefGoogle Scholar
  7. Burger, C., Wick, M., Brusselbach, S., and Muller, R. (1994). J. Cell. Sci. 107, 241–252.Google Scholar
  8. Bustamente, E., Morris, H. P., and Pedersen, P. L. (1977). Adv. Exp. Med. Biol. 92, 363–380.Google Scholar
  9. Chandel, N. S., Maltepe, E., Goldwasser, E., Mathieu, C. E., Simon, M. C., and Schumacker, P. T. (1998). Proc. Natl. Acad. Sci. U.S.A. 95, 11715–11720.CrossRefGoogle Scholar
  10. Cuezva, J. M., Krajewska, M., de Heredia, M. L., Krajewski, S., Santamaria, G., Kim, H., Zapata, J. M., Marusawa, H., Chamorro, M., and Reed, J. C. (2002). Cancer Res. 62, 6674–6681.Google Scholar
  11. Delsite, R., Kachhap, S., Anbazhagan, R., Gabrielson, E., and Singh, K. K. (2002). Mol. Cancer 1, 6.Google Scholar
  12. Drgon, T., Sabova, L., Nelson, N., and Kolarov, J. (1991). FEBS Lett. 289, 159–162.CrossRefGoogle Scholar
  13. Duborjal, H., Beugnot, R., De Camaret, B. M., and Issartel, J. P. (2002). Genome Res. 12, 1901–1909.CrossRefGoogle Scholar
  14. Faure Vigny, H., Heddi, A., Giraud, S., Chautard, D., and Stepien, G. (1996). Mol. Carcinog. 16, 165–172.Google Scholar
  15. Giraud, S., Bonod-Bidaud, C., Wesolowski-Louvel, M., and Stepien, G. (1998). J. Mol. Biol. 281, 409–418.CrossRefGoogle Scholar
  16. Graham, B. H., Waymire, K. G., Cottrell, B., Trounce, I. A., MacGregor, G. R., and Wallace, D. C. (1997). Nat. Genet. 16, 226–234.CrossRefGoogle Scholar
  17. Groen, A. K., Wanders, R. J., Westerhoff, H. V., van der Meer, R., and Tager, J. M. (1982). J. Biol. Chem. 257, 2754–2757.Google Scholar
  18. Houldsworth, J., and Attardi, G. (1988). Proc. Natl. Acad. Sci. U.S.A. 85, 377–381.Google Scholar
  19. Jouaville, L. S., Pinton, P., Bastianutto, C., Rutter, G. A., and Rizzuto, R. (1999). Proc. Natl. Acad. Sci. U.S.A. 96, 13807–13812.CrossRefGoogle Scholar
  20. Kaplan, R. S. (2001). J. Membr. Biol. 179, 165–183.CrossRefGoogle Scholar
  21. Kolarov, J., Kolarova, N., and Nelson, N. (1990). J. Biol. Chem. 265, 12711–12716.Google Scholar
  22. Kunz, W. S. (2003). Exp. Physiol. 88, 149–154.CrossRefGoogle Scholar
  23. Lee, I., Bender, E., and Kadenbach, B. (2002). Mol. Cell Biochem. 234–235, 63–70.Google Scholar
  24. Levy, S. E., Chen, Y. S., Graham, B. H., and Wallace, D. C. (2000). Gene 254, 57–66.CrossRefGoogle Scholar
  25. Liu, H., Hu, Y. P., Savaraj, N., Priebe, W., and Lampidis, T. J. (2001). Biochemistry 40, 5542–5547.Google Scholar
  26. Loiseau, D., Chevrollier, A., Douay, O., Vavasseur, F., Renier, G., Reynier, P., Malthiery, Y., and Stepien, G. (2002). Exp. Cell Res. 278, 12–18.CrossRefGoogle Scholar
  27. Lunardi, J., and Attardi, G. (1991). J. Biol. Chem. 266, 16534–16540.Google Scholar
  28. Marjanovic, S., Skog, S., Heiden, T., Tribukait, B., and Nelson, B. D. (1991). Exp. Cell Res. 193, 425–431.CrossRefGoogle Scholar
  29. Mathupala, S. P., Rempel, A., and Pedersen, P. L. (1995). J. Biol. Chem. 270, 16918–16925.Google Scholar
  30. Neckelmann, N., Li, K., Wade, R. P., Shuster, R., and Wallace, D. C. (1987). Proc. Natl. Acad. Sci. U.S.A. 84, 7580-7584.Google Scholar
  31. Netzker, R., Hermfisse, U., Wein, K. H., and Brand, K. (1994). Biochim. Biophys. Acta 1224, 371–376.Google Scholar
  32. Pastorino, J. G., Shulga, N., and Hoek, J. B. (2002). J. Biol. Chem. 277, 7610–7618.CrossRefGoogle Scholar
  33. Pevny, L. H., and Lovell-Badge, R. (1997). Curr. Opin. Genet. Dev. 7, 338–344.CrossRefGoogle Scholar
  34. Shepherd, D., and Garland, P. B. (1969). Biochem. J. 114, 597–610.Google Scholar
  35. Sokolikova, B., Sabova, L., Kissova, I., and Kolarov, J. (2000). Biochem. J. 352, 893–898.Google Scholar
  36. Stepien, G., Torroni, A., Chung, A., Hodge, J. A., and Wallace, D. C. (1992). J. Biol. Chem. 267, 14592–14597.Google Scholar
  37. Trinder, P. (1969). J. Clin. Pathol. 22, 158–161.Google Scholar
  38. Villani, G., Greco, M., Papa, S., and Attardi, G. (1998). J. Biol. Chem. 273, 31829–31836.CrossRefGoogle Scholar
  39. Vyssokikh, M. Y., and Brdiczka, D. (2003). Acta Biochim. Pol. 50, 389–404.Google Scholar
  40. Warburg, O. (1956). Science 123, 309–314.Google Scholar
  41. Zaid, A., Li, R., Luciakova, K., Barath, P., Nery, S., and Nelson, B. D. (1999). J. Bioenerg. Biomembr. 31, 129–135.CrossRefGoogle Scholar
  42. Zamora, M., Granell, M., Mampel, T., and Vinas, O. (2004). FEBS Lett. 563, 155–160.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Arnaud Chevrollier
    • 1
    • 2
    • 3
  • Dominique Loiseau
    • 1
    • 2
    • 3
  • Béatrice Chabi
    • 4
    • 5
  • Gilles Renier
    • 1
    • 2
    • 3
  • Olivier Douay
    • 1
    • 2
    • 3
  • Yves Malthièry
    • 1
    • 2
    • 3
  • Georges Stepien
    • 5
    • 6
  1. 1.InsermAngersFrance
  2. 2.Univ AngersAngersFrance
  3. 3.CHRU Angers, Service d' ImmunologieAngersFrance
  4. 4.INRAFrance
  5. 5.Univ AuvergneFrance
  6. 6.InsermFrance

Personalised recommendations