Journal of Bioenergetics and Biomembranes

, Volume 37, Issue 3, pp 113–119 | Cite as

Mitochondrial Carrier Homolog 2: A Clue to Cracking the BCL-2 Family Riddle?



BCL-2 family members are pivotal regulators of the apoptotic process. Mitochondria are a major site-of-action for these proteins. Several prominent alterations occur to mitochondria during apoptosis that seem to be part of the “mitochondrial apoptotic program.” The BCL-2 family members are believed to be the major regulators of this program, however their exact mechanism of action still remains a mystery. BID, a pro-apoptotic BCL-2 family member plays an essential role in initiating this program. Recently, we have revealed that in apoptotic cells the activated/truncated form of BID, tBID, interacts with a novel, uncharacterized protein named mitochondrial carrier homolog 2 (Mtch2). Mtch2 is a conserved protein that is similar to members of the mitochondrial carrier protein (MCP) family. This review summarizes the current knowledge regarding BCL-2 family members and the mitochondrial apoptotic program and examines the possible involvement of Mtch2 in this program.


BID mitochondrial carrier homolog 2 BH3-only proteins BCL-2family members mitochondrial carrier proteins mitochondria apoptosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basanez, G., Sharpe, J. C., Galanis, J., Brandt, T. B., Hardwick, J. M., and Zimmerberg, J. (2002). J. Biol. Chem. 277, 49360–49365.CrossRefPubMedGoogle Scholar
  2. Bernardi, P., and Azzone, G. F. (1981). J. Biol. Chem. 256, 7187–7192.PubMedGoogle Scholar
  3. Bernardi, P., Petronilli, V., Di Lisa, F., and Forte, M. (2001). Trends Biochem. Sci. 26, 112–117.CrossRefPubMedGoogle Scholar
  4. Cory, S., and Adams, J. M. (2002). Nat. Rev. Cancer 2, 647–656.CrossRefPubMedGoogle Scholar
  5. Danial, N. N., Gramm, C. F., Scorrano, L., Zhang, C. Y., Krauss, S., Ranger, A. M., Datta, S. R., Greenberg, M. E., Licklider, L. J., Lowell, B. B., Gygi, S. P., and Korsmeyer, S. J. (2003). Nature 424, 952–956.Google Scholar
  6. Danial, N. N., and Korsmeyer, S. J. (2004). Cell 116, 205–219.PubMedGoogle Scholar
  7. Degli Esposti, M., Ferry, G., Masdehors, P., Boutin, J. A., Hickman, J. A., and Dive, C. (2003). J. Biol. Chem. 278, 15749–15757.CrossRefPubMedGoogle Scholar
  8. Dejean, L. M., Martinez-Caballero, S., Guo, L., Hughes, C., Teijido, O., Ducret, T., Ichas, F., Korsmeyer, S. J., Antonsson, B., Jonas, E. A., and Kinnally, K. W. (2005). Mol. Biol. Cell. 16, 2424–2432.CrossRefPubMedGoogle Scholar
  9. Desagher, S., Osen-Sand, A., Montessuit, S., Magnenat, E., Vilbois, F., Hochmann, A., Journot, L., Antonsson, B., and Martinou, J. C. (2001). Mol. Cell 8, 601–611.CrossRefPubMedGoogle Scholar
  10. Desagher, S., Osen-Sand, A., Nichols, A., Eskes, R., Montessuit, S., Lauper, S., Maundrell, K., Antonsson, B., and Martinou, J. C. (1999). J. Cell Biol. 144, 891–901.CrossRefPubMedGoogle Scholar
  11. Eskes, R., Desagher, S., Antonsson, B., and Martinou, J. C. (2000). Mol. Cell Biol. 20, 929–935.CrossRefPubMedGoogle Scholar
  12. Frey, T. G., and Mannella, C. A. (2000). Trends Biochem. Sci. 25, 319–324.CrossRefPubMedGoogle Scholar
  13. Goldstein, J. C., Waterhouse, N. J., Juin, P., Evan, G. I., and Green, D. R. (2000). Nat. Cell Biol. 2, 156–162.CrossRefPubMedGoogle Scholar
  14. Goping, I. S., Gross, A., Lavoie, J. N., Nguyen, M., Jemmerson, R., Roth, K., Korsmeyer, S. J., and Shore, G. C. (1998). J. Cell Biol. 143, 207–215.CrossRefPubMedGoogle Scholar
  15. Griffiths, G. J., Dubrez, L., Morgan, C. P., Jones, N. A., Whitehouse, J., Corfe, B. M., Dive, C., and Hickman, J. A. (1999). J. Cell Biol. 144, 903–914.CrossRefPubMedGoogle Scholar
  16. Grinberg, M., Sarig, R., Zaltsman, Y., Frumkin, D., Grammatikakis, N., Reuveny, E., and Gross, A. (2002). J. Biol. Chem. 277, 12237–12245.CrossRefPubMedGoogle Scholar
  17. Grinberg, M., Schwarz, M., Zaltsman, Y., Eini, T., Niv, H., Pietrokovski, S., and Gross, A. (2005). Mol. Cell. Biol. 25, 4579–4590.CrossRefPubMedGoogle Scholar
  18. Gross, A., Jockel, J., Wei, M. C., and Korsmeyer, S. J. (1998). EMBO J 17, 3878–3885.CrossRefPubMedGoogle Scholar
  19. Gross, A., Yin, X. M., Wang, K., Wei, M. C., Jockel, J., Milliman, C., Erdjument-Bromage, H., Tempst, P., and Korsmeyer, S. J. (1999). J. Biol. Chem. 274, 1156–1163.PubMedGoogle Scholar
  20. Harada, H., Quearry, B., Ruiz-Vela, A., and Korsmeyer, S. J. (2004). Proc. Natl. Acad. Sci. USA 101, 15313–15317.PubMedGoogle Scholar
  21. Huang, D. C., and Strasser, A. (2000). Cell 103, 839–842.PubMedGoogle Scholar
  22. Jagasia, R., Grote, P., Westermann, B., and Conradt, B. (2005). Nature 433, 754–760.PubMedGoogle Scholar
  23. Karbowski, M., Lee, Y. J., Gaume, B., Jeong, S. Y., Frank, S., Nechushtan, A., Santel, A., Fuller, M., Smith, C. L., and Youle, R. J. (2002). J. Cell Biol. 159, 931–938.CrossRefPubMedGoogle Scholar
  24. Kim, P. K., Annis, M. G., Dlugosz, P. J., Leber, B., and Andrews, D. W. (2004). Mol. Cell 14, 523–529.PubMedGoogle Scholar
  25. Kuwana, T., Bouchier-Hayes, L., Chipuk, J. E., Bonzon, C., Sullivan, B. A., Green, D. R., and Newmeyer, D. D. (2005). Mol. Cell 17, 525–535.CrossRefPubMedGoogle Scholar
  26. Kuwana, T., Mackey, M. R., Perkins, G., Ellisman, M. H., Latterich, M., Schneiter, R., Green, D. R., and Newmeyer, D. D. (2002). Cell 111, 331–342.CrossRefPubMedGoogle Scholar
  27. Lei, K., and Davis, R. J. (2003). Proc. Natl. Acad. Sci. USA 100, 2432–2437.CrossRefPubMedGoogle Scholar
  28. Letai, A., Bassik, M. C., Walensky, L. D., Sorcinelli, M. D., Weiler, S., and Korsmeyer, S. J. (2002). Cancer Cell 2, 183–192.CrossRefPubMedGoogle Scholar
  29. Li, H., Zhu, H., Xu, C. J., and Yuan, J. (1998). Cell 49, 491–501.CrossRefGoogle Scholar
  30. Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X. (1998). Cell 94, 481–490.PubMedGoogle Scholar
  31. Moreau, C., Cartron, P. F., Hunt, A., Meflah, K., Green, D. R., Evan, G., Vallette, F. M., and Juin, P. (2003). J. Biol. Chem. 278, 19426–19435.CrossRefPubMedGoogle Scholar
  32. Muchmore, S. W., Sattler, M., Liang, H., Meadows, R. P., Harlan, J. E., Yoon, H. S., Nettesheim, D., Chang, B. S., Thompson, C. B., Wong, S. L., Ng, S. L., and Fesik, S. W. (1996). Nature 381, 335–341.CrossRefPubMedGoogle Scholar
  33. Palmieri, F. (1994). FEBS Lett. 346, 48–54.CrossRefPubMedGoogle Scholar
  34. Pavlov, E. V., Priault, M., Pietkiewicz, D., Cheng, E. H., Antonsson, B., Manon, S., Korsmeyer, S. J., Mannella, C. A., and Kinnally, K. W. (2001). J. Cell Biol. 155, 725–731.CrossRefPubMedGoogle Scholar
  35. Petros, A. M., Olejniczak, E. T., and Fesik, S. W. (2004). Biochim. Biophys. Acta 1644, 83–94.CrossRefPubMedGoogle Scholar
  36. Puthalakath, H., Huang, D. C., O’Reilly, L. A., King, S. M., and Strasser, A. (1999). Mol. Cell 3, 287–296.CrossRefPubMedGoogle Scholar
  37. Puthalakath, H., and Strasser, A. (2002). Cell Death Differ. 9, 505–512.CrossRefPubMedGoogle Scholar
  38. Saito, M., Korsmeyer, S. J., and Schlesinger, P. H. (2000). Nat. Cell Biol. 2, 553–555.CrossRefPubMedGoogle Scholar
  39. Sarig, R., Zaltsman, Y., Marcellus, R. C., Flavell, R., Mak, T. W., and Gross, A. (2003). J. Biol. Chem. 278, 10707–10715.CrossRefPubMedGoogle Scholar
  40. Schagger, H. (2001). Methods Cell Biol. 65, 231–244.PubMedGoogle Scholar
  41. Schendel, S. L., Montal, M., and Reed, J. C. (1998). Cell Death Differ. 5, 372–380.CrossRefPubMedGoogle Scholar
  42. Scorrano, L., Ashiya, M., Buttle, K., Weiler, S., Oakes, S. A., Mannella, C. A., and Korsmeyer, S. J. (2002). Dev. Cell 2, 55–67.CrossRefPubMedGoogle Scholar
  43. Shi, Y. (2002). Mol. Cell 9, 459–470.CrossRefPubMedGoogle Scholar
  44. Shimizu, S., Konishi, A., Kodama, T., and Tsujimoto, Y. (2000). Proc. Natl. Acad. Sci. USA 97, 3100–3105.Google Scholar
  45. Shimizu, S., and Tsujimoto, Y. (2000). Proc. Natl. Acad. Sci. U S A 97, 577–582.CrossRefPubMedGoogle Scholar
  46. Vander Heiden, M. G., Li, X. X., Gottleib, E., Hill, R. B., Thompson, C. B., and Colombini, M. (2001). J. Biol. Chem. 276, 19414–19419.CrossRefPubMedGoogle Scholar
  47. Vander Heiden, M. G., and Thompson, C. B. (1999). Nat. Cell Biol. 1, E209–E216.CrossRefPubMedGoogle Scholar
  48. Varfolomeev, E. E., and Ashkenazi, A. (2004). Cell 116, 491–497.CrossRefPubMedGoogle Scholar
  49. Walker, J. E., and Runswick, M. J. (1993). J. Bioenerg. Biomembr. 25, 435–446.CrossRefPubMedGoogle Scholar
  50. Wang, X. (2001). Genes Dev. 15, 2922–2933.PubMedGoogle Scholar
  51. Wei, M. C., Lindsten, T., Mootha, V. K., Weiler, S., Gross, A., Ashiya, M., Thompson, C. B., and Korsmeyer, S. J. (2000). Genes Dev. 14, 2060–2071.PubMedGoogle Scholar
  52. Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B., and Korsmeyer, S. J. (2001). Science 292, 727–730.Google Scholar
  53. Xu, X., Shi, Y. C., Gao, W., Mao, G., Zhao, G., Agrawal, S., Chisolm, G. M., Sui, D., and Cui, M. Z. (2002). J. Biol. Chem. 277, 48913–48922.CrossRefPubMedGoogle Scholar
  54. Yin, X. M., Wang, K., Gross, A., Zhao, Y., Zinkel, S., Klocke, B., Roth, K. A., and Korsmeyer, S. J. (1999). Nature 400, 886–891.Google Scholar
  55. Zha, J., Harada, H., Yang, E., Jockel, J., and Korsmeyer, S. J. (1996). Cell 87, 619–628.CrossRefPubMedGoogle Scholar
  56. Zhang, Q. H., Ye, M., Wu, X. Y., Ren, S. X., Zhao, M., Zhao, C. J., Fu, G., Shen, Y., Fan, H. Y., Lu, G., Zhong, M., Xu, X. R., Han, Z. G., Zhang, J. W., Tao, J., Huang, Q. H., Zhou, J., Hu, G. X., Gu, J., Chen, S. J., and Chen, Z. (2000). Genome Res. 10, 1546–1560.CrossRefPubMedGoogle Scholar
  57. Zhao, Y., Li, S., Childs, E. E., Kuharsky, D. K., and Yin, X. M. (2001). J. Biol. Chem. 276, 27432–27440.CrossRefPubMedGoogle Scholar
  58. Zong, W. X., Lindsten, T., Ross, A. J., MacGregor, G. R., and Thompson, C. B. (2001). Genes Dev. 15, 1481–1486.CrossRefPubMedGoogle Scholar
  59. Zoratti, M., and Szabo, I. (1995). Biochim. Biophys. Acta 1241, 139–176.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations