Journal of Bioenergetics and Biomembranes

, Volume 37, Issue 1, pp 1–15 | Cite as

A Possible Site of Superoxide Generation in the Complex I Segment of Rat Heart Mitochondria

  • S. Tsuyoshi Ohnishi
  • Tomoko Ohnishi
  • Shikibu Muranaka
  • Hirofumi Fujita
  • Hiroko Kimura
  • Koichi Uemura
  • Ken-ichi Yoshida
  • Kozo Utsumi
Article

Abstract

We searched for possible sites of superoxide generation in the complex I segment of the respiratory chain by studying both forward and reverse electron transfer reactions in isolated rat heart mitochondria. Superoxide production was monitored by measuring the release of hydrogen peroxide from mitochondria with a fluorescence spectrophotometer using the Amplex red/horseradish peroxidase system. In the forward electron transfer, a slow superoxide production in the presence of glutamate and malate was enhanced by both rotenone and piericidin A (specific inhibitors at the end of the complex I respiratory chain). Both diphenileneiodonium and ethoxyformic anhydride (inhibitors for respiratory components located upstream of the respiratory chain) inhibited the enhancement by rotenone and piericidin A.

In contrast, in reverse electron transfer driven by ATP, both diphenileneiodonium and ethoxyformic anhydride enhanced the superoxide production. Piericidin A also increased superoxide production. Rotenone increased it only in the presence of piericidin A. Our results suggest that the major site of superoxide generation is not flavin, but protein-associated ubisemiquinones which are spin-coupled with iron-sulfer cluster N2.

Keywords

Heart mitochondria complex I superoxide fluorescence assay of hydrogen peroxide iron-sulfur cluster N2 ubiquinone ubisemiquinone 

Abbreviations:

BSA

bovine serum albumin

DBQ

decylubiquinone(2,3-dimethoxy-5-methyl-6-decylbenzoquinone)

diS-C3-(5)

3,3′-dipropyl-2, 2′-thiodicarbocyanine iodide

DMSO

dimethyl sulfoxide

DPI

diphenileneiodonium

DTT

ditheiothreitol

EDTA

ethylenediaminetetraacetic acid

EFA

ethoxyformic anhydride (also known as diethyl pyrocarbonate)

EGTA

ethylene glycol bis(β-aminoethyl ether)

FAD

flavin adenine dinucleotide

FMN

flavin mononucleotide

Q

ubiquinone

QH2

reduced ubiquinone

Qi and Qo sites

two ubiquinone binding sites in the complex III segment of the respiratory chain

ROS

reactive oxygen species

SOD

superoxide dismutase

SQ

ubisemiquinone

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barja, G., and Herrero, A. (1998). Localization at complex I and mechanism of the higher free radical production of brain nonsynaptic mitochondra in the short-lived rat than in the longevous pigeon. J. Bioenerg. Biomembr. 30, 235–243.CrossRefPubMedGoogle Scholar
  2. Barrientos, A., and Moraes, C. T. (1999). Titrating the effects of mitochondrial complex I impairment in the cell physiology. J. Biol. Chem. 274, 16188–16197.CrossRefPubMedGoogle Scholar
  3. Beal, M. F., and Bodies-Wollner, I. (1997). Mitochondria and Free Radicals in Neurogegenerative Disease. Wiley-Liss, New York.Google Scholar
  4. Belogrudov, G., and Hatefi, Y. (1994). Biochemistry 33, 4571–4576.CrossRefPubMedGoogle Scholar
  5. Blair, P. V. (1967). Methods Enzymol. 10, 78–81.Google Scholar
  6. Blandini, F., Nappi, G., and Greenamyre, J. T. (1998). Quantitative study of mitochondrial complex I in platelets of parkinsonian patients. Mov Disord 13, 11–15.PubMedGoogle Scholar
  7. Boveris, A., and Cadenas, E. (1975). Mitochondrial production of superoxide anions and its relationship to the antimycin snsensitive respiration. FEBS Lett. 54, 311–314.PubMedGoogle Scholar
  8. Boveris, A., and Chance, B. (1973). The mitochondrial generation of hydrogen peroxide: General properties and effect of hyperbalic oxygen. Biochem. J. 134, 707–716.PubMedGoogle Scholar
  9. Boveris, A., Cadenas, E., and Stoppani, A. O. M. (1976). Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem. J. 156, 435–444.PubMedGoogle Scholar
  10. Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72, 248–254.PubMedGoogle Scholar
  11. Brand, M. D., Affourtit, C., Esteves, C., Green, K., Lambert, A. J., Miwa, S., Pakay, J. L., and Parker, N. (2004). Mitochondrial superoxide production, biological effects, and activation of uncoupling proteins. Free Rad. Biol. Med. 37, 755–767.PubMedGoogle Scholar
  12. Brandt, U., Kerscher, S., Drose, S., Zwicker, K., and Zickermann, V. (2003). Proton pumping by NADH:ubiquinone oxidoreductase. A redox driven conformational change mechanism? FEBS Lett. 545, 9–17.PubMedGoogle Scholar
  13. Burbaev, D. S., Moroz, I. A., Kotlyar, A. B., Sled, V. D., and Vinogradov, A. D. (1989). Ubisemiquinone in the NADH-ubiquinone reductase region of the mitochondrial respiratory chain. FEBS Lett. 254, 47–51.Google Scholar
  14. Chakraborti, T., Das, S., Mondal, M., Roychoudhury, S., and Chakraborti, S. (1999). Oxidant, mitochondria and calcium: An overview. Cell Signal 11, 77–85.PubMedGoogle Scholar
  15. Chance, B., and Hagihara, B. (1963). Direct spectroscopic measurements of interaction of components of the respiratory chainwith ATP, ADP, phosphate, and uncoupling agents. In Proceedings of the 5th International Congress of Biochemistry Vol. 5, Pergamon Press, Oxford, New York, pp. 3–13.Google Scholar
  16. Chen, Q., Vazquez, E. J., Moghaddas, S., Hoppel, C. L., and Lesnefsky, E. J. (2003). Pruduction of reactive oxygen species by mitochondria. J. Biol. Chem. 278, 36027–36031.PubMedGoogle Scholar
  17. Crofts, A. R., Meinhardt, S. W., Jones, K. R., and Snozzi, M. (1983). The role of the quinone pool in the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides: A modified Q-cycle mechanism. Biochim. Biophys. Acta 723, 202–218.Google Scholar
  18. De Vries, S., Albracht, S. P., Berden, J. A., and Slater, E. C. (1981). A new species of bound ubisemiquinone anion in QH2: Cytochrome c oxidoreductase. J. Biol. Chem. 256, 11996–11998.PubMedGoogle Scholar
  19. Degli Esposti, M., Crimi, M., and Ghelli, A. (1994). Natural variation in the potency and binding sites of mitochondrial quinone-like inhibitors. Biochem. Soc. Trans. 22, 209–213.PubMedGoogle Scholar
  20. Dunnett, S. B., and Bjorklund, A. (1999). Prospects for new restorative and neuroprotective treatmens in Parkinson’s disease. Nature 359, A32–A39.Google Scholar
  21. Enroth, C., Eger, B. T., Okamoto, K., Nishino, T., Nishino, T., and Pai, E. (2000). Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: Struicdture-based mechanism of conversion. Proc. Natl. Acad. Sci. U.S.A. 97, 10723–10728.PubMedGoogle Scholar
  22. Esteves, T. C., Echtay, K. S., Jonassen, T., Clarke, C. F., and Brand, M.~D. (2004). Biochem. J. 379, 309–315.PubMedGoogle Scholar
  23. Flemming, D., Schlitt, A., Spehr, V., Boishof, T., and Friedrich, T. (2003). Iron-sulfur cluster N2 of the Escherichia coli NADH: Ubiquinone oxidoreductase (complex I) is located on subunit Nuo B. J. Biol. Chem. 276, 47602–47609.Google Scholar
  24. Fleury, C., Mignotte, B., and Vayssiere, J. (2002). Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84, 131–141.PubMedGoogle Scholar
  25. Friedrich, T., van Heek, P., Ohnishi, T., Forche, E., Kunze, B., Jansen, R., Trowitzsche-Kienast, W., Hofle, G., Reichenbach, H., and Weiss, H. (1994). Two binding sites of inhibitors in NAADH ubiquinone oxidoreductase (complex I): Relationship of one site with the ubiquinone-binding site of bacterial glucose ubiquinone oxidoreductase. Eur. J. Biochem. 2196.Google Scholar
  26. Furuno, T., Kanno, T., Arita, K., Asami, M., Utsumi, T., Doi, Y., Inoue, M., and Utsumi, K. (2001). Role of long chain fatty acids and carnitine in mitochondrial membrane permeability transition. Biochem. Pharmacol. 62, 1037–1046.PubMedGoogle Scholar
  27. Genova, M. L., Ventura, B., Giuliano, G., Bovina, C., Formiggini, G., Parenti, C. G., and Lenaz, G. (2001). The site of production of superoxide radical in mitochondrial complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett. 505, 364–368.PubMedGoogle Scholar
  28. Gillis, J. C., Benfield, P., and McTavish, D. (1994). Idebenone. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in age-related cognitive disorders. Drugs Aging 5, 133–152.PubMedGoogle Scholar
  29. Grivennikova, V. G., Maklashina, E. O., Gavrikova, E. V., and Vinogradov, A. D. (1997). Interaction of the mitochondrial NADH-ubiquinone reductase with rotenone as related to the enzyme active/inactive transition. Biochim. Biophys. Acta 1319, 223–232.PubMedGoogle Scholar
  30. Gross, A., Yin, X. M., Wang, K., Wei, M. C., Jockel, J., Milliman, C., Erdjument-Bromage, H., Tempst, P., and Korsmeyer, S. J. (1999). Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274, 1156–1163.PubMedGoogle Scholar
  31. Halliwell, B. (1992). Reactive oxygen species in the centrl nervous system. J. Neurochem. 59, 1609–1623.PubMedGoogle Scholar
  32. Herrero, A., and Barja, G. (2000). Localization of site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria. J. Bioenerg. Biomembr. 32, 609–615.PubMedGoogle Scholar
  33. Ide, T., Tsutsui, H., Kinugawa, S., Suematsu, N. Hayashidani, S., Ichikawa, K., Utsumi, H., Machida, Y., Egashira, K., and Takeshita, A. (2000). Direct evidence for increased hydrosyl radicals originating from superoxide in the failing myocardium. Circ. Res. 86, 152–157.PubMedGoogle Scholar
  34. Ide, T., Tsutsui, H., Kinugawa, S., Utsumi, H., Kang, D., Hattori, N., Uchida, K., Arimura, K., Ehashi, K., and Takeshita, A. (1999). Mitochondrialelectron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ. Res. 85, 357–363.PubMedGoogle Scholar
  35. Ingledew, W. J., and Ohnishi, T. (1980). An analysis of some thermodynamic properties of iron-sulfur centres in site I of mitochondria. Biochem. J. 186, 111–117.PubMedGoogle Scholar
  36. Ino, T., Nishioka, T., and Miyoshi, H. (2003). Characterization of inhibitor binding sites of mitochondrial complex I using fluorescent inhibitor. Biochim. Biophys. Acta 1605, 15–20.PubMedGoogle Scholar
  37. Iverson, T., Luna-Chavez, C., Cecchini, G., and Rees, D. C. (1999). Structure of the E. coli fumarate reductase respiratory complex. Science 284, 1961–1966.CrossRefPubMedGoogle Scholar
  38. Johnson, J. E., Jr., Choksi, K., and Widger, W. R. (2003). NADH-ubiquinone oxidoreductase: Substrate-dependent oxygen turnover to superoxide anion as a function of flavin mononucleotide. Mitochondrion 3, 97–110.Google Scholar
  39. Kotlyar, A. B., and Vinogradov, A. D. (1990). Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. Biochim. Biophys. Acta 1019, 151–158.PubMedGoogle Scholar
  40. Kudin, A. P., Bimpong-Buta, N. Y.-B., Vielhaber, S., Elger, C. E., and Kunz, W. S. (2004). Characterization of superoxide-producing sites in isolated brain mitochondria. J. Biol. Chem. 279, 4127–4135.PubMedGoogle Scholar
  41. Kushnaeva, Y., Murrhy, A. N., and Andreyev, A. (2002). Complex-I mediated reactive oxygen species generation: Modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem. J. 368, 545–553.PubMedGoogle Scholar
  42. Lambert, A. J., and Brant, M. D. (2004). Inhibitors of the quinone-binding site allow rapid superoxide production from mitocondrial NADH:ubiquinone oxidoreductase (compolex I). J. Biol. Chem. 279, 39414–39420.PubMedGoogle Scholar
  43. Lancaster, C. R. D., Kröger, A., Auer, M., and Michel, H. (1999). Structure of fumarate reductase from Wolinella succinogenes at 2.2 Å resolution. Nature 402, 377–385.CrossRefPubMedGoogle Scholar
  44. Lenaz, G., Bovina, C., D’Aurelio, M., Fato, R., Formiggini, G., Genova, M. L., Giuliano, G., Pich, M., Paolucci, U., Castelli, G., and Ventura, B. (2002). Role of mitochondria in oxidative stress and aging. Ann. N.Y. Acad. Sci. 959, 199–213.PubMedGoogle Scholar
  45. Liu, Y., Fiskum, G., and Schubert, D. (2002). Generation of reactive oxygen species by the mitochondrial electron transport. J. Neurochem. 80, 780–787.PubMedGoogle Scholar
  46. Löw, H., and Vallin, I. (1963). Succinate-linked diphosphopyridine nucleotide reduction in submitochondrial particles. Biochim. Biophys. Acta 69, 361–374.Google Scholar
  47. Luft, R. (1994). The development of mitochondrial medicine. Proc. Natl. Acad. Sci. USA 91, 8731–8738.PubMedGoogle Scholar
  48. Magnitsky, S., Toulokhonova, L., Yano, T., Sled, V. D., Hägerhäll, C., Grivennikofva, V. G., Burbaev, D. S., Vinogradov, A. D., and Ohnishi, T. (2002). EPR characterization of ubisemiquinones and iron-sulfur cluster N2, central components of energy couplint in the NADH-ubiquinone oxidoreductase (complex I) in situ. J. Bioenerg. Biomembr 34, 193–208.PubMedGoogle Scholar
  49. Maklashina, E., Kotylyar, A. B., and Cecchini, G. (2003). Active/de-actice transition of respiratory complex I in bacteria, fungi, and animals. Biochim. Biophys. Acta 1606, 95–103.PubMedGoogle Scholar
  50. Maklashina, E., Sher, Y., Zhou, H.-Z., Gray, M. O., Karliner, J. S., and Cecchini, G. (2002). Effect of anoxia/reperfusion on the reversible active/de-active transition of NADH-ubiquinone oxidoreductase (complex I) in rat heart. Biochim. Biophys. Acta 1556, 6–12.PubMedGoogle Scholar
  51. Mamedova, A. A., Holt, P. J., Carroll, J., and Sazanov, L. A. (2004). Substrate-induced conformational change in bacterial complex I. J. Biol. Chem. 279, 23830–23836.PubMedGoogle Scholar
  52. Mancini, M., Nicholson, D., Roy, S., Thornberry, N., Peterson, E., Casciola-Rosen, L., and Rosen, A. (1998). The caspase-3 precursor has a cytosolic and mitochondrial distribution: Implications for apoptotic signaling. J. Cell Biol. 140, 1485–1495.PubMedGoogle Scholar
  53. Marchetti, P., Castedo, M., Susin, S. A., Zamzami, N., Hirsch, T., Macho, A., Haeffner, A., Hirsch, F., Geuskens, M., and Kroemer, G. (1996). Mitochondrial permeability transition is a central coordinating event of apoptosis. J. Exp. Med. 184, 1155–1160.PubMedGoogle Scholar
  54. Mela, L., and Seitz, S. (1979). Isolation of mitochondria with emphasis on heart mitochondria from small amounts of tissue. Methods Enzymol. 55, 39–46.PubMedGoogle Scholar
  55. Mitchell, P. (1975). The protonmotive Q cycle: a general formulation. FEBS Lett. 59, 137–139.PubMedGoogle Scholar
  56. Miwa, S., and Brand, M. D. (2003). Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling. Biochem. Soc. Trans. 31, 1300–1301.PubMedGoogle Scholar
  57. Miyadera, H., Kano, K., Miyoshi, H., Ishii, N., Hekimi, S., and Kita, K. (2002). Quinones in long-lived clk-1 mutants of Caenorhabditis elegans. FEBS Lett. 512, 33–37.PubMedGoogle Scholar
  58. Mizuno, Y., Sone, N., and Saitoh, T. (1987). Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on activities of the enzymes in the electron transport system in mouse brain. J. Neurochem. 48, 1787–1793.PubMedGoogle Scholar
  59. Mohanty, J., Jaffe, J., Schulman, E., and Raible, D. G. (1997). A highly sensitive fluorescencnt micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J. Immunol. Methods 202, 133–141.PubMedGoogle Scholar
  60. Muller, F. (2000). The nature mechanism of superoxide productionby the electron transpot chain: Its relevance to aging. J. Am. Aging Assoc. 23, 227–253.Google Scholar
  61. Muller, F. L., Roberts, A. G., Bowman, M. K., and Kramer, D. M. (2003). Architecture of the Qo site of the cytochrome bc1 complex probed by superoxide production. Biochemistry 42, 6493–6499.PubMedGoogle Scholar
  62. Nishikimi, A., Kira, Y., Kasahara, E., Sato, E. F., Kanno, T., Utsumi, K., and Inoue, M. (2001). Tributyltin interacts with mitochondria and induces cytochrome c release. Biochem. J. 356, 621–626.PubMedGoogle Scholar
  63. Ohnishi, T. (1987). Structure of the succinate-ubiquinone oxidoreductase (complex II). In Current Topics in Bioenergetics (Lee, C. P., ed.), Vol. 15, Academic Press, New York, pp. 37–65.Google Scholar
  64. Ohnishi, T. (1998). Iron sulfur clusters/semiquinones in complex I. Biochim. Biophys. Acta 1364, 186–206.PubMedGoogle Scholar
  65. Ohnishi, T., and Trumpower, B. L. (1980). Differential effects of antimycin on ubisemiquinone bound in different environments in isolated succinate-cytochrome c reductase complex. J. Biol. Chem. 255, 3278–3284.PubMedGoogle Scholar
  66. Ohnishi, T., Johnson, J. E., Jr., Yano, T., LoBrutto, R., and Widger, W. R. (2005). Thermodynamic and EPR studies of slowly-relaxing SQ species in the isolated bovine heart complex I. FEBS Lett. 579, 500–506.PubMedGoogle Scholar
  67. Ohnishi, T., Meinhardt, S. W., von Jagow, G., Yagi, T., and Hatefi, Y. (1994). Effect of ethoxyformic anyhydride on the Rieske iron-sulfur protein of bovine heart ubiquinol: Cytochrome c oxidoreductase. FEBS Lett. 353, 103–107.PubMedGoogle Scholar
  68. Okun, J. G., Lummen, P., and Brandt, U. (1999). Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH:ubiquinone oxidoreductase). J. Biol. Chem. 274, 2625–2630.PubMedGoogle Scholar
  69. Petlicki, J., and van de Ven, T. G. M. (1998). The equilibrium between the oxidation of hydrogen peroxide by oxygen and the dismutation of peroxyl or superoxide radicals in aqueous solution in contact with oxygen. J. Chem. Soc. Faraday Trans. 94, 2763–2767.Google Scholar
  70. Ragan, C. I. (1987). Structure of NADH-ubiquinone reductase (Complex I). Curr. Top. Bioenerg. 15, 1–36.Google Scholar
  71. Ragan, C. I., Ohnishi, T., and Hatefi, Y. (1986). Iron-sulphur proteins of mitochondrial NADH-ubiquinone reductase (complex I). In Iron-Sulfur Protein Research (Matsubara, H., et al., eds.), Japan Scientific Socities Press, Tokyo, pp. 220–231.Google Scholar
  72. Ramsay, R. R., and Singer, T. P. (1992). Relation of superoxide generation and lipid peroxidation to the inhibition of NADH-Q oxidoreductase by rotenone, piericidin A and MPP+. Biochem. Biophys. Res. Commun. 189, 47–52.PubMedGoogle Scholar
  73. Robinson, B. H. (1998). Human complex I deficiency: Clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect. Biochim. Biophys. Acta 1364, 271–286.PubMedGoogle Scholar
  74. Rustin, P., Von Kleist-Retzow, J. C., Chantrel-Goussard, K. S. D., Munnich, A., and Rotig, A. (1999). NADH-quinone oxidoreductase, the most complex complex. Lancet 354, 477–479.PubMedGoogle Scholar
  75. Schapira, A. H. V. (1998). Human complex i defects in neurodegenerative diseases. Biochim. Biophys. Acta 1364, 261–270.PubMedGoogle Scholar
  76. Sled, V. D., Rudnitzky, N. I., Hatefi, Y., and Ohnishi, T. (1994). Thermodynamic analysis of flavin in mitochondrial NADH-ubiquinone oxidoreductase (complex I). Biochemistry 33, 10069–10075.PubMedGoogle Scholar
  77. Sun, J., and Trumpower, B. L. (2003). Superoxide anion generation by the cytochrome bc1 complex. Arch. Biochem. Biophys. 419, 198–206.PubMedGoogle Scholar
  78. Takeshige, K., and Minakami, S. (1979). NADH and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Biochem. J. 180, 129–135.PubMedGoogle Scholar
  79. Talbot, D. A., Lambert, A. J., and Brand, M. D. (2004). Production of endogenous matrix superoxide from mitochondria complex K leads to activation of uncoupling protein 3. FEBS Lett. 556, 111–115.Google Scholar
  80. Tatton, W. G., Olanow, C. W., Tatton, W. G., and Olanow, C. W. (1999). Biochim. Biophys. Acta 1410, 195–213.PubMedGoogle Scholar
  81. Toth, P. P., Ferguson-Miller, S. M., and Suelter, C. H. (1986). Methods Enzymol. 125, 16–27.PubMedGoogle Scholar
  82. Turrens, J. F., and Boveris, A. (1980). Generation of superoxide anion by NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191, 421–427.PubMedGoogle Scholar
  83. Umeda, S., Muta, T., and Ohsato, T. (2000). The D-loop structure of human mtDNA is destabilized directly by 1-methyl-4-phenylpyridinium ion (MPP+), a parkinsonism-causing toxin. Eur. J. Biochem. 267, 200–206.CrossRefPubMedGoogle Scholar
  84. Vik, S. B., and Hatefi, Y. (1984). Inhibition of mitochondrial NADH: Ubiquinone oxidoreductase by ethoxyformic anhydride. Biochem. Int. 9, 547–555.PubMedGoogle Scholar
  85. Vinogradov, A. (1998). Catalytic properties of the mitochondrial NADH-ubiquinone oxidoreductase (Complex I) and the pseudo-reversible active/inactive enzyme transition. Biochim. Biophys. Acta 1364, 169–185.PubMedGoogle Scholar
  86. Yagi, T., Vik, S. B., and Hatefi, Y. (1982). Biochemistry 21, 4777–4782.CrossRefPubMedGoogle Scholar
  87. Yankovskaya, V., Horsefield, R., Tornroth, S., Luna-Chavez, C., Miyoshi, H., Leger, C., Byrne, B., Cecchini, G., and Iwata, S. (2003). Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299, 700–704.CrossRefPubMedGoogle Scholar
  88. Yano, T., Dunham, W. R., and Ohnishi, T. (2005). Characterization of the ΔμH+-sensitive SQ species (SQNf) and the interaction with cluster N2: New insight into the energy-coupled electron transfer in complex I. Biochemistry, 44, 1744–1754. PubMedGoogle Scholar
  89. Yano, T., Sklar, J., Nakamaru-Ogiso, E., Takahashi, Y., Yagi, T., and Ohnishi, T. (2003). Characterization of cluster N5 as a fast-relaxing [4Fe-4S] cluster in the Nqo3 subunit od the proton-translocating NADH-ubiquinone oxidoeductase from paracoccus denitrificans. J. Biol. Chem. 278, 15514–15522.PubMedGoogle Scholar
  90. Young, T. A., Cunningham, C. C., and Bailey, S. M. (2002). Arch. Biochem. Biophys. 405, 65–72.PubMedGoogle Scholar
  91. Zhang, L., Yu, L., and Yu, C.-A. (1998). Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria. J. Biol. Chem. 273, 33972–33976.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • S. Tsuyoshi Ohnishi
    • 1
    • 6
  • Tomoko Ohnishi
    • 2
  • Shikibu Muranaka
    • 3
  • Hirofumi Fujita
    • 3
  • Hiroko Kimura
    • 4
  • Koichi Uemura
    • 5
  • Ken-ichi Yoshida
    • 5
  • Kozo Utsumi
    • 3
  1. 1.Philadelphia Biomedical Research InstituteKing of Prussia
  2. 2.The Johnson Research Foundation and Dept. of Biochemistry and BiophysicsUniversity of PennsylvaniaPhiladelphia
  3. 3.Institute of Medical ScienceKurashiki Medical CenterKurashiki, OkayamaJapan
  4. 4.Department of Forensic MedicineJuntendo University School of MedicineTokyoJapan
  5. 5.Department of Forensic MedicineSchool of Medicine, the University of TokyoTokyoJapan
  6. 6.Philadelphia Biomedical Research InstituteRadnor

Personalised recommendations