Advertisement

The Predictive Validity of Injury Proxies: Predicting Early Adolescent Injuries with Assessments of Minor Injuries

  • Bryan T. KarazsiaEmail author
  • Manfred H. M. van Dulmen
Article

Abstract

This study offers an initial step in establishing the predictive validity of injury proxies. Proxies are utilized frequently by injury researchers to overcome various methodological and ethical issues inherent in injury research, although psychometric data on proxies are limited. Using data from the NICHD Study of Early Child Care and Youth Development we found that minor injuries predicted adolescent injuries longitudinally, even in the context of well-established predictors of injury risk. This study is the first to demonstrate the predictive validity of minor injuries, a common proxy of pediatric injury risk. Findings are discussed with respect to implications for conceptual understanding of injury risk, future research, and prevention efforts.

Keywords

Injuries Minor injuries Close calls Predictive validity 

References

  1. Achenbach, T. M. (1991). Manual for the child behavior checklist/4-18 and 1991 profile. Burlington: University of Vermont.Google Scholar
  2. Atkins, D. C., & Gallop, R. J. (2007). Rethinking how family researchers model infrequent outcomes: a tutorial on count regression and zero-inflated models. Journal of Family Psychology, 21, 726–735.PubMedCrossRefGoogle Scholar
  3. Bijur, P., Golding, J., Haslum, M., & Kurzon, M. (1988). Behavioral predictors of injury in school-age children. American Journal of Diseases in Children, 142, 1307–1312.Google Scholar
  4. Burt, C. W., & Fingerhut, L. A. (1998). Injury visits to hospital emergency departments: United States, 1992–1995. Vital Health Statistics, Series 13, 9, 1–76.Google Scholar
  5. Cobb, B. K., Cairns, B. D., Miles, M. S., & Cairns, R. B. (1995). A longitudinal study of the role of socio-demographic factors and childhood aggression on adolescent injury and “close calls”. Journal of Adolescent Health, 17, 381–388.PubMedCrossRefGoogle Scholar
  6. Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159.PubMedCrossRefGoogle Scholar
  7. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analyses for the behavioral sciences (3rd ed.). Hillsdale: Lawrence Erlbaum.Google Scholar
  8. Cohen, L. L., La Greca, A. M., Blount, R. L., Kazak, A. E., Holmbeck, G. N., & Lemanek, K. L. (2008). Introduction to the special issue: evidence-based assessment in pediatric psychology. Journal of Pediatric Psychology, 33, 911–915.PubMedCrossRefGoogle Scholar
  9. Cummings, P., Rivara, F. P., Thompson, R. S., & Reid, R. J. (2005). Ability of parents to recall the injuries of their young children. Injury Prevention, 11, 43–47.PubMedCrossRefGoogle Scholar
  10. DeCoster, J., Iselin, A. R., & Gallucci, M. (2009). A conceptual and empirical examination of justifications for dichotomization. Psychological Methods, 14, 349–366.PubMedCrossRefGoogle Scholar
  11. Durkin, M. S., Davidson, L. L., Kuhn, L., O’Connor, P., & Barlow, B. (1994). Low-income neighborhoods and the risk of severe pediatric injury: a small-area analysis in northern Manhattan. American Journal of Public Health, 84, 587–592.PubMedCrossRefGoogle Scholar
  12. Eminson, C. J., Jones, H., & Goldacre, M. (1986). Repetition of accidents in young children. Journal of Epidemiology and Community Health, 40, 170–173.PubMedCrossRefGoogle Scholar
  13. Hamilton, B. E., Minino, A. M., Martin, J. A., Kochanek, K. D., Strobino, D. M., et al. (2007). Annual summary of vital statistics: 2005. Pediatrics, 119, 345–360.PubMedCrossRefGoogle Scholar
  14. Hammer, T. H., & Landau, J. C. (1981). Methodological issues in the use of absence data. Journal of Applied Psychology, 66, 574–581.CrossRefGoogle Scholar
  15. Harrison, D. A., & Hulin, C. L. (1989). Investigations of absenteeism: using event history models to study the absence-taking process. Journal of Applied Psychology, 74, 300–316.CrossRefGoogle Scholar
  16. Jaquess, D., & Finney, J. (1994). Previous injuries and behavior problems predict children’s injuries. Journal of Pediatric Psychology, 19, 79–89.PubMedCrossRefGoogle Scholar
  17. Johnson, R. A., & Wichern, D. W. (1998). Applied multivariate statistical analysis. Englewood Cliffs: Prentice Hall.Google Scholar
  18. Karazsia, B. T., & van Dulmen, M. H. M. (2008). Regression models for count data: illustrations using longitudinal predictors of childhood injury. Journal of Pediatric Psychology, 33, 1076–1084.PubMedCrossRefGoogle Scholar
  19. Karazsia, B. T., & van Dulmen, M. H. M. (2010). Assessing injuries with proxies: implications for concurrent relations and behavioral antecedents of pediatric injuries. Journal of Pediatric Psychology, 35, 51–60.PubMedCrossRefGoogle Scholar
  20. Lewis, T., DiLillo, D., & Peterson, L. (2004). Parental beliefs regarding developmental benefits of childhood injuries. American Journal of Health Behavior, 28, S61–S68.PubMedGoogle Scholar
  21. Long, J. S., & Freese, J. (2006). Regression models for categorical dependent variables using Stata (2nd ed.). College Station: Stata.Google Scholar
  22. MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of dichotomization of quantitative variables. Psychological Methods, 7, 19–40.PubMedCrossRefGoogle Scholar
  23. Martin, J. A., Hsjang-Ching, K., Mathews, T. J., Hoyert, D., Strobino, D. M., Guyer, B., et al. (2008). Annual summary of vital statistics: 2006. Pediatrics, 121, 788–801.PubMedCrossRefGoogle Scholar
  24. Mash, E. J., & Hunsley, J. (2005). Special section: developing guidelines for the evidence-based assessment of child and adolescent disorders. Journal of Clinical Child and Adolescent Psychology, 34, 362–379.PubMedCrossRefGoogle Scholar
  25. Miller, T. R., Romano, E. O., & Spicer, R. S. (2000). The cost of childhood unintentional injuries and the value of prevention. The Future of Children, 10, 137–163.PubMedCrossRefGoogle Scholar
  26. Morrongiello, B. A. (1997). Children’s perspectives on injury and close-call experiences: sex differences in injury-outcome processes. Journal of Pediatric Psychology, 22, 499–512.PubMedCrossRefGoogle Scholar
  27. Morrongiello, B. A., & Hogg, K. (2004). Mothers’ reactions to children misbehaving in ways that can lead to injury: implications for gender differences in children’s risk taking and injuries. Sex Roles, 50, 103–118.CrossRefGoogle Scholar
  28. Morrongiello, B. A., Ondejko, L., & Littlejohn, A. (2004). Understanding toddlers’ in-home injuries: I. Context, correlates, and determinants. Journal of Pediatric Psychology, 29, 415–431.PubMedCrossRefGoogle Scholar
  29. Morrongiello, B. A., Walpole, B., & McArthur, B. A. (2009). Young Children’s Risk of Unintentional Injury: a comparison of mothers’ and fathers’ supervision beliefs and reported practices. Journal of Pediatric Psychology, 34, 1063–1068.PubMedCrossRefGoogle Scholar
  30. NICHD Early Child Care Research Network. (2000). The interaction of child care and family risk in relation to child development at 24 and 36 months. Applied Developmental Science, 6, 144–156.Google Scholar
  31. Ollendick, T. H. (1999). President’s column: empirically supported assessment for clinical practice: is it possible? Is it desirable? Clinical Psychologist, 52, 1–2.Google Scholar
  32. Peterson, L., & Brown, D. (1994). Integrating child injury and abuse/neglect research: common histories, etiologies, and solutions. Psychological Bulletin, 116, 293–315.PubMedCrossRefGoogle Scholar
  33. Peterson, L., Harbeck, C., & Moreno, A. (1993). Measures of children’s injuries: self-reported versus maternal-reported events with temporally proximal versus delayed reporting. Journal of Pediatric Psychology, 18, 133–147.PubMedCrossRefGoogle Scholar
  34. Peterson, L., Saldana, L., & Heiblum, N. (1996). Quantifying tissue damage from childhood injury: the minor injury severity scale. Journal of Pediatric Psychology, 21, 251–267.PubMedCrossRefGoogle Scholar
  35. Pless, C. E., & Pless, I. B. (1995). How well they remember: The accuracy of parent reports. Archives of Pediatric and Adolescent Medicine, 149, 553–558.Google Scholar
  36. Plumert, J., & Schwebel, D. (1997). Social and temperamental influences on children’s overestimation of their physical abilities: links to accidental injuries. Journal of Experimental Child Psychology, 67, 317–337.PubMedCrossRefGoogle Scholar
  37. Pulkkinen, L. (1995). Behavioral precursors to accidents and resulting physical impairment. Child Development, 66, 1660–1679.PubMedCrossRefGoogle Scholar
  38. Rosenthal, R., & Rosnow, R. L. (2008). Essentials of behavioral research: methods and data analysis (3rd ed.). New York: McGraw-Hill.Google Scholar
  39. Schwebel, D. C., & Brezausek, C. M. (2007). The role of context in risk for pediatric injury: influences from the home and child care environments. Merrill-Palmer Quarterly, 53, 105–130.CrossRefGoogle Scholar
  40. Schwebel, D. A., & Gaines, J. (2007). Pediatric unintentional injury: Behavioral risk factors and implications for prevention. Journal of Developmental & Behavioral Pediatrics, 28, 245–254.Google Scholar
  41. Schwebel, D.C., & Brezausek, C. M. (2008). Nocturnal awakenings and pediatric injury risk. Journal of Pediatric Psychology, 33, 323–332.PubMedCrossRefGoogle Scholar
  42. Sleet, D. A., Liller, K. D., White, D. D., & Hopkins, K. (2004). Injuries, injury prevention, and public health. American Journal of Health Behavior, 28, S6–S12.PubMedGoogle Scholar
  43. StataCorp. (2007). Stata statistical software: Release 10. College Station: StataCorp LP.Google Scholar
  44. Thorndike, E. L. (1911). Animal intelligence: Experimental studies. New York: Macmillan.Google Scholar
  45. Wazana, A. (1997). Are there injury-prone children? A critical review of the literature. Canadian Journal of Psychiatry, 42, 602–610.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Bryan T. Karazsia
    • 1
    Email author
  • Manfred H. M. van Dulmen
    • 2
  1. 1.Department of PsychologyThe College of WoosterWoosterUSA
  2. 2.Department of PsychologyKent State UniversityKentUSA

Personalised recommendations