Distress Tolerance Scale: A Confirmatory Factor Analysis Among Daily Cigarette Smokers

  • Teresa M. Leyro
  • Amit Bernstein
  • Anka A. Vujanovic
  • Alison C. McLeish
  • Michael J. Zvolensky
Article

Abstract

The present investigation evaluated the factor structure of the Distress Tolerance Scale (DTS; Simons and Gaher 2005) among a sample of 173 (54.9% males) daily cigarette smokers (M = 16.64 cigarettes per day, SD = 7.83). Comparison of a single higher-order model and a hierarchical multidimensional model was conducted using confirmatory factor analyses (CFA). In addition, evaluation of the internal consistency and convergent and discriminant validity of the better-fitting model was completed. CFA of the DTS indicated a single second-order factor of distress tolerance, and four lower-order factors including Tolerance, Appraisal, Absorption, and Regulation; each factor demonstrated acceptable levels of internal consistency. In addition, the DTS displayed good convergent and discriminant validity with theoretically relevant smoking and affect variables. Results are discussed in terms of explicating the latent structure of distress tolerance, as measured by the DTS, within the context of smoking research.

Keywords

Distress tolerance Distress intolerance Emotion regulation Cigarette smokers Nicotine Substance use Confirmatory factor analysis 

References

  1. Anderson, J. C., & Gerbing, D. W. (1984). The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika, 49, 155–73. doi:10.1007/BF02294170.CrossRefGoogle Scholar
  2. Babor, T. F., de la Fuente, J. R., Saunders, J., & Grant, M. (1992). AUDIT- Alcohol Use Disorders Identification test: Guidelines for use in primary health care. Geneva: World Health Organization.Google Scholar
  3. Baker, T. B., Piper, M. E., McCarthy, D. E., Majeskie, M. R., & Fiore, M. C. (2004). Addiction motivation reformulated: an affective processing model of negative reinforcement. Psychological Review, 111, 33–51. doi:10.1037/0033-295X.111.1.33.PubMedCrossRefGoogle Scholar
  4. Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246. doi:10.1037/0033-2909.107.2.238.PubMedCrossRefGoogle Scholar
  5. Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88, 588–606. doi:10.1037/0033-2909.88.3.588.CrossRefGoogle Scholar
  6. Bentler, P. M. (1992). EQS structural equations program manual, Los Angelas, CA. BMDP Statistical Software.Google Scholar
  7. Bernstein, A., Vujanovic, A. A., Leyro, T. M., & Zvolensky, M. J. (2010). Distress tolerance: Research synthesis and future directions. In A. Bernstein, M. J. Zvolensky, & A. A. Vujanovic (Eds.), Distress tolerance. New York: Guilford.Google Scholar
  8. Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.Google Scholar
  9. Brandon, T. H., & Baker, T. B. (1991). The smoking consequences questionnaire: the subjective expected utility of smoking in college students. Psychological Assessment, 3, 484–491. doi:10.1037/1040-3590.3.3.484.CrossRefGoogle Scholar
  10. Brandon, T. H., Herzog, T. A., Juliano, L. M., Irvin, J. E., Lazev, A. B., & Simmons, V. N. (2003). Pretreatment task persistence predicts smoking cessation outcome. Journal of Abnormal Psychology, 112, 448–456. doi:10.1037/0021-843X.112.3.448.PubMedCrossRefGoogle Scholar
  11. Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York: Guilford.Google Scholar
  12. Brown, R., Lejuez, C., Kahler, C., & Strong, D. (2002). Distress tolerance and duration of past smoking cessation attempts. Journal of Abnormal Psychology, 111, 180–185. doi:10.1037/0021-843X.111.1.180.PubMedCrossRefGoogle Scholar
  13. Brown, R. A., Lejuez, C. W., Kahler, C. W., Strong, D. R., & Zvolensky, M. J. (2005). Distress tolerance and early smoking lapse (theory and clinical implications). Clinical Psychology Review, 25, 713–733. doi:10.1016/j.cpr.2005.05.003.PubMedCrossRefGoogle Scholar
  14. Brown, R. A., Palm, K. M., Strong, D. R., Lejuez, C. W., Kahler, C. W., Zvolensky, M. J., et al. (2008). Distress tolerance treatment for early-lapse smokers: rationale, program description, and preliminary findings. Behavior Modification, 32, 302–332. doi:10.1177/0145445507309024.PubMedCrossRefGoogle Scholar
  15. Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136–162). Beverly Hills: Sage.Google Scholar
  16. Buckley, T. C., Kamholz, B. W., Mozley, S. L., Gulliver, S. B., Holohan, D. R., Helstrom, A. W., et al. (2005). A psychometric evaluation of the Smoking Consequences Questionnaire-Adult in smokers with psychiatric conditions. Nicotine & Tobacco Research, 7, 739–745. doi:10.1080/14622200500259788.CrossRefGoogle Scholar
  17. Byrne, B. M. (1998). Structural equation modelling with LISREL, PRELIS and SIMPLIS: Basic concepts, applications and programming. Mahwah: Erlbaum.Google Scholar
  18. Cocores, J. (1993). Nicotine dependence: diagnosis and treatment. The Psychiatric Clinics of North America, 16, 49–60. PMid:8456047.PubMedGoogle Scholar
  19. Downey, K. K., & Kilbey, M. M. (1995). Relationship between nicotine and alcohol expectancies and substance dependence. Experimental and Clinical Psychopharmacology, 3, 174–182. doi:10.1037/1064-1297.3.2.174.CrossRefGoogle Scholar
  20. Fagerstrom, K. O. (1978). Measuring degree of physical dependence to tobacco smoking with reference to individualization of treatment. Addictive Behaviors, 3, 235–241. doi:10.1016/0306-4603(78)90024-2.PubMedCrossRefGoogle Scholar
  21. First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (1994). Structured clinical interview for DSM-IV patient edition (SCID-N/P, Version 2.0). New York: Biometrics Research Department.Google Scholar
  22. Hajek, P. (1991). Individual differences in difficulty quitting smoking. British Journal of Addiction, 86, 555–558. doi:10.1111/j.1360-0443.1991.tb01807.x.PubMedCrossRefGoogle Scholar
  23. Hajek, P., Belcher, M., & Stapleton, J. (1987). Breath-holding endurance as a predictor of success in smoking cessation. Addictive Behaviors, 12, 285–288. doi:10.1016/0306-4603(87)90041-4.PubMedCrossRefGoogle Scholar
  24. Heatherton, T. F., Kozlowski, L. T., Frecker, R. C., & Fagerstrom, K. O. (1991). The Fagerstrom test for nicotine dependence: a revision of the Fagerstrom Tolerance Questionnaire. British Journal of Addiction, 86, 1119–27. doi:10.1111/j.1360-0443.1991.tb01879.x.PubMedCrossRefGoogle Scholar
  25. Hooper, D., Coughlan, J., & Mullen, M. (2008). Structural equation modeling: guidelines for determining model fit. Electronic Journal of Business Research Methods, 6, 53–60. http://www.ejbrm.com/vol6/v6-i1/Hooperetal.pdf.
  26. Hu, L.-T., & Bentler, P. (1995). Evaluating model fit. In R. H. Hoyle (Ed.), Structural equation modeling. Concepts, issues, and applications (pp. 76–99). London: Sage.Google Scholar
  27. Hu, L., & Bentler, P. (1999). Cutoff criteria for fit indices in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55. doi:10.1080/10705519909540118.CrossRefGoogle Scholar
  28. Hutcheson, G., & Sofroniou, N. (1999). The multivariate social scientist: Introductory statistics using generalized linear models. Thousand Oaks, CA: Sage Publications.Google Scholar
  29. Jaccard, J., & Wan, C. K. (1996). LISREL approaches to interaction effects in multiple regression. Thousand Oaks: Sage.Google Scholar
  30. Jöreskog, K. G., & Sörbom, D. (1981). Lisrel user’s guide. Version V. Chicago: International Educational Services.Google Scholar
  31. Jöreskog, K. G., & Sörbom, D. (2006). LISREL 8.80 for Windows [Computer Software]. Lincolnwood, IL: Scientific Software International, Inc.Google Scholar
  32. Kline, R. B. (2005). Principles and practice of structural equation modeling (2nd ed.). New York: Guilford.Google Scholar
  33. Leyro, T. M., Zvolensky, M. J., Vujanovic, A. A., & Bernstein, A. (2008). Anxiety sensitivity and smoking motives and outcome expectancies among adult daily smokers: replication and extension. Nicotine & Tobacco Research, 10, 985–994. doi:10.1080/14622200802097555.CrossRefGoogle Scholar
  34. Leyro, T. M., Zvolensky, M. J., & Bernstein, A. (2010). Distress tolerance and psychopathological symptoms and disorders: A review of the empirical literature among adults. Psychological Bulletin.Google Scholar
  35. MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1, 130–49. doi:10.1037/1082-989X.1.2.130.CrossRefGoogle Scholar
  36. Marsh, H. W., Balla, J. R., & McDonald, R. P. (1988). Goodness of fit indexes in confirmatory factor analysis: the effect of sample size. Psychological Bulletin, 103, 391–410. doi:10.1037/0033-2909.103.3.391.CrossRefGoogle Scholar
  37. McIntosh, C. (2006). Rethinking fit assessment in structural equation modelling: a commentary and elaboration on Barrett (2007). Personality and Individual Differences, 42, 859–67. doi:10.1016/j.paid.2006.09.020.CrossRefGoogle Scholar
  38. Miles, J., & Shevlin, M. (1998). Effects of sample size, model specification and factor loadings on the GFI in confirmatory factor analysis. Personality and Individual Differences, 25, 85–90. doi:10.1016/S0191-8869(98)00055-5.CrossRefGoogle Scholar
  39. Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York: McGraw-Hill.Google Scholar
  40. Parrott, A. C. (1999). Does cigarette smoking cause stress? The American Psychologist, 54, 817–820. doi:10.1037/0003-066X.54.10.817.PubMedCrossRefGoogle Scholar
  41. Payne, T. J., Smith, P. O., McCracken, L. M., McSherry, W. C., & Antony, M. M. (1994). Assessing nicotine dependence: a comparison of the Fagerstrom Tolerance Questionnaire (FTQ) with the Fagerstrom Test for Nicotine Dependence (FTND) in a clinical sample. Addictive Behaviors, 19, 307–317. doi:10.1016/0306-4603(94)90032-9.PubMedCrossRefGoogle Scholar
  42. Pomerleau, C. S., Carton, S. M., Lutzke, M. L., Flessland, K. A., & Pomerleau, O. F. (1994). Reliability of the Fagerstrom Tolerance Questionnaire and the Fagerstrom Test for Nicotine Dependence. Addictive Behaviors, 19, 33–39. doi:10.1016/0306-4603(94)90049-3.PubMedCrossRefGoogle Scholar
  43. Richards, J. M., Daughters, S. B., Bornovalova, M. A., Brown, R. A., & Lejuez, C. W. (2010). Substance use disorders. In M. Zvolensky, A. Bernstien, & A. Vujanovic (Eds.), Distress tolerance. New York: Guilford.Google Scholar
  44. Saunders, J. B., Aasland, O. G., Babor, T. F., De La Fuente, J. R., & Grant, M. (1993). Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption: II. Addiction, 88, 791–804. doi:10.1111/j.1360-0443.1993.tb02093.x.PubMedCrossRefGoogle Scholar
  45. Simons, J., & Gaher, R. (2005). The Distress Tolerance Scale: development and validation of a self-report measure. Motivation and Emotion, 29, 83–102. doi:10.1007/s11031-005-7955-3.CrossRefGoogle Scholar
  46. State of Vermont Department of Health. (2007). 2007 Vermont population estimates. Retrieved December 17, 2009, from http://healthvermont.gov/research/2007pop/documents/RACENOTE07.PDF.
  47. Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25, 173-180.Google Scholar
  48. Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). New York: Allyn and Bacon.Google Scholar
  49. Watson, D. (2000). Mood and temperament. New York: Guilford.Google Scholar
  50. Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of Personality and Social Psychology, 54, 1063–1070. doi:10.1037/0022-3514.54.6.1063.PubMedCrossRefGoogle Scholar
  51. West, R. J., Hajek, P., & Belcher, M. (1989). Severity of withdrawal symptoms as a predictor of outcome of an attempt to quit smoking. Psychological Medicine, 19, 981–985. doi:10.1017/S0033291700005705.PubMedCrossRefGoogle Scholar
  52. Wheaton, B., Muthen, B., Alwin, D. F., & Summers, G. F. (1977). Assessing Reliability and Stability in Panel Models. In D. R. Heise (Ed.), Sociological methodology (pp. 84–136). San Francisco: Jossey-Bass.Google Scholar
  53. Zvolensky, M. J., Schmidt, N. B., & Stewart, S. H. (2003). Panic disorder and smoking. Clinical Psychology: Science and Practice, 10, 29–51. doi:10.1093/clipsy/10.1.29.CrossRefGoogle Scholar
  54. Zvolensky, M. J., Lejuez, C. W., Kahler, C. W., & Brown, R. A. (2004). Nonclinical panic attack history and smoking cessation: an initial examination. Addictive Behaviors, 29, 825–830. doi:10.1016/j.addbeh.2004.02.017.PubMedCrossRefGoogle Scholar
  55. Zvolensky, M. J., Bernstein, A., & Vujanovic, A. A. (Eds.). (2010). Distress tolerance. New York: Guilford.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Teresa M. Leyro
    • 1
  • Amit Bernstein
    • 2
  • Anka A. Vujanovic
    • 3
    • 4
  • Alison C. McLeish
    • 5
  • Michael J. Zvolensky
    • 6
  1. 1.Department of PsychologyUniversity of VermontBurlingtonUSA
  2. 2.Department of PsychologyUniversity of HaifaHaifaIsrael
  3. 3.National Center for PTSD, Behavioral Science DivisionVA Boston Healthcare SystemBostonUSA
  4. 4.Division of PsychiatryBoston University School of MedicineBostonUSA
  5. 5.Department of PsychologyUniversity of CincinnatiCincinnatiUSA
  6. 6.Anxiety and Health Research Laboratory, Department of PsychologyUniversity of VermontBurlingtonUSA

Personalised recommendations