Investigation of the internal structure and dynamics of cellulose by 13C-NMR relaxometry and 2DPASS-MAS-NMR measurements

  • Manasi Ghosh
  • Naveen Kango
  • Krishna Kishor DeyEmail author


Internal structure and dynamics of commercial and natural cellulose were studied by measuring chemical shift anisotropy (CSA) parameters, and spin–lattice relaxation rate (1/T1) at each and every chemically different carbon nuclear site. CSA parameters were measured by 13C two-dimensional phase adjusted spinning sideband (2DPASS) cross-polarization magic angle spinning (CP-MAS) NMR experiment. Site specific spin–lattice relaxation time was measured by Torchia-CP method. Anisotropy parameters of C4 and C6 regions are higher than C1 and C235 regions and asymmetry of C4 line is lower than any other carbon site. The higher values of CSA parameters of C4 and C6 nuclei arise due to the rotation of O4–C4, C1–O4, O5–C5–C6–O6 and C4–C5–C6–O6 bonds at torsion angles ψ, Φ, χ and χ′ respectively and the influence of interchain and intrachain hydrogen bondings. Two distinct peaks are also observed for C4 and C6 resonance line position—one peak arises primarily due to the nuclei in amorphous region and another one arises due to the same nuclei resides in paracrystalline region. The spin–lattice relaxation time and the CSA parameters are different at these two distinct peak positions of C4 and C6 line. Molecular correlation time of each and every chemically different carbon site was calculated with the help of CSA parameters and spin–lattice relaxation time. The molecular correlation time of the amorphous region is one order of magnitude less than the crystalline region. The distinction between amorphous and paracrystalline regions of cellulose is more vividly portrayed by determining spin–lattice relaxation time, CSA parameters, and molecular correlation time at each and every chemically different carbon site. This type of study correlating the structure and dynamics of cellulose will illuminate the path of inventing biomimetic materials.

Graphic abstract


2D PASS MAS NMR Cellulose Relaxation Molecular correlation time 



The author Manasi Ghosh is indebted to Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India (File No. EMR/2016/000249), and UGC-BSR (File No. 30-12/2014(BSR)) for financial support. We are also grateful to Sophisticated Instrumentation Centre (SIC) of Dr. Hari Singh Gour Central University for providing high resolution solid state NMR facility.


  1. Allard P, Hard T (1997) NMR relaxation mechanism for backbone carbonyl carbons in a 13C, 15N labelled protein. J Magn Reson 126:48–57ADSCrossRefGoogle Scholar
  2. Anet FAL, O’Leary DJ (1992) The shielding tensor Part II: understanding its strange effect on relaxation. Concepts Magn Reson 4:35–52CrossRefGoogle Scholar
  3. Antzutkin ON, Shekar SC, Levitt MH (1995) Two-dimensional sideband separation in magic angle spinning NMR. J Magn Reson A 115:7–19ADSCrossRefGoogle Scholar
  4. Araujo CF, Freire CSR, Nolasco MM, Ribeiro-Claro PJA, Rudic S, Silvestre AJD, Vaz PD (2018) Hydrogen bond dynamics of cellulose through inelastic neutron scattering spectroscopy. Biomacromol 19:1305–1313CrossRefGoogle Scholar
  5. Asakawa N, Takenoiri M, Sato D, Sakurai M, Inoue Y (1999) 13C chemical shift tensors and secondary structure of poly-l-alanine by solid-state two-dimensional spin-echo NMR and ab initio chemical shielding calculation. Magn Reson Chem 37:303–311CrossRefGoogle Scholar
  6. Bax AD, Szeverenyi NM, Maciel GE (1983a) Correlation of isotropic shifts and chemical shift anisotropies by two-dimensional Fourier-transform magic angle hopping NMR spectroscopy. J Magn Reson 52:147–152ADSGoogle Scholar
  7. Bax AD, Szeverenyi NM, Maciel GE (1983b) Chemical shift anisotropy in powdered solids studied by 2D FT CP/MAS NMR. J Magn Reson 51:400–408ADSGoogle Scholar
  8. Bax AD, Szeverenyi NM, Maciel GE (1983c) Chemical shift anisotropy in powdered solids studied by 2D FT NMR with flipping of the spinning axis. J Magn Reson 55:494–497ADSGoogle Scholar
  9. Bennett AE, Ok JH, Griffin RG, Vega S (1992) Chemical shift correlation spectroscopy in rotating solids: radio frequency driven dipolar recoupling and longitudinal exchange. J Chem Phys 96:8624–8627ADSCrossRefGoogle Scholar
  10. Bergenstrahle M, Wohlert J, Larsson PT, Mazeau K, Berglund LA (2008) Dynamics of cellulose-water interfaces: NMR spin-lattice relaxation times calculated from atomistic computer simulations. J Phys Chem B 112:2590–2595CrossRefGoogle Scholar
  11. Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182CrossRefGoogle Scholar
  12. Chan JCC, Tycko R (2003) Recoupling of chemical shift anisotropies in solid state NMR under high speed magic angle spinning and in uniformly 13C labeled systems. J Chem Phys 118:8378–8389ADSCrossRefGoogle Scholar
  13. Dais P, Spyros A (1995) 13C nuclear magnetic relaxation and local dynamics of synthetic polymers in dilute solution and in the bulk state. Prog Nucl Magn Reson Spectrosc 27:555–633CrossRefGoogle Scholar
  14. Dixon WT (1982) Spinning-sideband-free and spinning-sideband-only NMR spectra in spinning samples. J Chem Phys 77:1800–1809ADSCrossRefGoogle Scholar
  15. Eckman RR, Henrichs PM, Peacock AJ (1997) Study of polyethylene by solid state NMR relaxation and spin diffusion. Macromolecules 30:2474–2481ADSCrossRefGoogle Scholar
  16. Fayon F, Bessada C, Douy A, Massiot D (1999) Chemical bonding of lead in glasses through isotropic vs anisotropic correlation: PASS shifted Echo. J Magn Reson 137:116–121ADSCrossRefGoogle Scholar
  17. Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108:E1195–E1203ADSCrossRefGoogle Scholar
  18. Foston M (2014) Advances in solid-state NMR of cellulose. Curr Opin Biotechnol 27:176–184CrossRefGoogle Scholar
  19. Frydman L, Chingas GC, Lee YK, Grandinetti PJ, Eastman MA, Barrall GA, Pines A (1992) Correlation of isotropic and anisotropic chemical shifts in solids by two-dimensional variable-angle-spinning NMR. Isr J Chem 32:161–164CrossRefGoogle Scholar
  20. Gan Z (1992) High-resolution chemical shift and chemical shift anisotropy correlation in solids using slow magic angle spinning. J Am Chem Soc 114:8307–8309CrossRefGoogle Scholar
  21. Gardner KH, Blackwell JB (1974) The structure of native cellulose. Biopolymer 13:1975–2001CrossRefGoogle Scholar
  22. Ghosh M, Prajapati BP, Suryawanshi RK, Dey KK, Kango N (2019a) Study of the effect of enzymatic deconstruction on natural cellulose by NMR measurements. Chem Phys Lett 727:105–115ADSCrossRefGoogle Scholar
  23. Ghosh M, Sadhukhan S, Dey KK (2019b) Elucidating the internal structure and dynamics of α-chitin by 2DPASS-MAS-NMR and spin-lattice relaxation measurements. Solid State Nucl Magn Reson 97:7–16CrossRefGoogle Scholar
  24. Ghosh M, Prajapati BP, Kango N, Dey KK (2019c) A comprehensive and comparative study of the internal structure and dynamics of natural β-keratin and regenerated β-keratin by solid state NMR spectroscopy. Solid State Nucl Magn Reson 101:1–11CrossRefGoogle Scholar
  25. Grunin YB, Grunin LY, Nikol’skaya EA, Talantsev VI (2012) Microstructure of cellulose: NMR relaxation study. Polym Sci Ser A 54:201–208CrossRefGoogle Scholar
  26. Haeberlen U (1976) Advances in magnetic resonance. Academic Press, New York (suppl. 1) Google Scholar
  27. Havlin RH, Le HB, Laws DD, deDios AC, Oldfield EJ (1997) An ab initio quantum chemical investigation of carbon-13 NMR shielding tensors in glycine, alanine, valine, isoleucine, serine, and threonine: comparisons between helical and sheet tensors, and the effects of χ 1 on shielding. J Am Chem Soc 119:11951–11958CrossRefGoogle Scholar
  28. Heller J, Laws DD, Tomaselli M, King DS, Wemmer DE, Pines A, Havlin RH, Oldfield EJ (1997) Determination of dihedral angles in peptides through experimental and theoretical studies of R-carbon chemical shielding tensors. J Am Chem Soc 119:7827–7831CrossRefGoogle Scholar
  29. Herzfeld J, Berger AE (1980) Sideband intensities in NMR spectra of samples spinning at the magic angle. J Chem Phys 73:6021–6030ADSCrossRefGoogle Scholar
  30. Hou G, Byeon In-Ja L, Ahn J, Gronenborn AM, Polenova T (2012) Recoupling of chemical shift anisotropy by R-symmetry sequences in magic angle spinning NMR spectroscopy. J Chem Phys 137:134201–134210ADSCrossRefGoogle Scholar
  31. Huex L, Dinand E, Vignon MR (1999) Structural aspects in ultrathin cellulose microfibrils followed by 13C CP-MAS NMR. Carbohydr Polym 40:115–124CrossRefGoogle Scholar
  32. Hult EL, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer 42:3309–3314CrossRefGoogle Scholar
  33. Hult EL, Liitia T, Maunu SR, Hortling B, Iversen TA (2002) CP/MAS 13C-NMR study of cellulose structure on the surface of refined kraft pulp fibres. Carbohydr Polym 49:231–234CrossRefGoogle Scholar
  34. Idstrom A, Schantz S, Sundberg J, Chmelka BF, Gatenholm P, Nordstiema L (2016) 13C NMR assignments of regenerated cellulose from solid-state 2D NMR spectroscopy. Carbohydr Polym 151:480–487CrossRefGoogle Scholar
  35. Isogai A, Usuda M, Kato T, Uryu T, Atalla RH (1989) Solid-state CP/MAS 13C NMR study of cellulose polymorphs. Macromolecules 22:3168–3172ADSCrossRefGoogle Scholar
  36. Kang X, Kirui A, Widanage MCD, Vigier FM, Cosgrove DJ, Wang T (2019) Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nat Commun 10:347/1–347/9ADSCrossRefGoogle Scholar
  37. Kolbert AC, deGroot HJM, Oas TG, Griffin RG (1989) In advances in magnetic resonance, vol 13. Academic Press, San DiegoGoogle Scholar
  38. Kono H, Numata Y (2006) Structural investigation of cellulose Iα and Iβ by 2D RFDR NMR spectroscopy: determination of sequence of magnetically inequivalent D-glose units along cellulose chain. Cellulose 13:317–326CrossRefGoogle Scholar
  39. Kono H, Yunoki S, Shikano T, Fujiwara M, Erata T, Takai M (2002) CP/MAS 13C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS 13C NMR spectrum of the native cellulose. J Am Chem Soc 124:7506–7511CrossRefGoogle Scholar
  40. Kono H, Numata Y, Erata T, Takai M (2004) 13C and 1H resonance assignment of mercerized cellulose II by two dimensional MAS NMR spectroscopy. Macromolecules 37:5310–5316ADSCrossRefGoogle Scholar
  41. Larsson PT, Westermark U, Iversen T (1995) Determination of the cellulose Iα allomorph content in a tunicate cellulose by CP/MAS 13C-NMR spectroscopy. Carbohydr Res 278:339–343CrossRefGoogle Scholar
  42. Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS 13C NMR investigation of molecular ordering in celluloses. Carbohydr Res 302:19–25CrossRefGoogle Scholar
  43. Larsson PT, Hult EL, Wickholm K, Pettersson E, Iversen T (1999) CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl Magn Reson 15:31–40CrossRefGoogle Scholar
  44. Lennholm H, Larsson PT, Iversen T (1994) Determination of cellulose Iα and Iβ in lignocellulosic materials. Carbohydr Res 261:119–131CrossRefGoogle Scholar
  45. Liu SF, Mao JD, Schmidt-Rohr K (2002) A robust technique for two-dimensional separation of undistorted chemical shift anisotropy powder patterns in magic angle spinning NMR. J Magn Reson 155:15–28ADSCrossRefGoogle Scholar
  46. Maciel GE, Szeverenyi NM, Sardashti M (1985) Chemical-shift-anisotropy powder patterns by the two-dimensional angle-flipping approach: effect of crystallite packing. J Magn Reson 64:365–374ADSGoogle Scholar
  47. Mason J (1993) Conventions for the reporting of nuclear magnetic shielding (or shift) tensors suggested by participants in the NATO ARW on NMR shielding constants at the University of Maryland, College Park, July 1992. Solid State Nucl Magn Reson 2:285–288CrossRefGoogle Scholar
  48. Massiot D, Montauillout V, Fayon F, Florian P, Bessada C (1997) Order-resolved sideband separation in magic angle spinning NMR of half integer quadrupolar nuclei. Chem Phys Lett 272:295–300ADSCrossRefGoogle Scholar
  49. Maunu SL, Littia T, Kauliomaki S, Hortling B, Sundquist J (2000) 13C CPMAS NMR investigations of cellulose polymorphs in different pulps. Cellulose 7:146–159CrossRefGoogle Scholar
  50. Mehring M (1983) Principles of high resolution NMR in solids, 2nd edn. Berlin, Springer VerlagCrossRefGoogle Scholar
  51. Munowitz MG, Griffin RG, Bodenhausen G, Huang TH (1981) Two-dimensional rotational spin-echo nuclear magnetic-resonance in solid-correlation of chemical-shift and dipolar interactions. J Am Chem Soc 103:2529–2533CrossRefGoogle Scholar
  52. Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Magn Reson 15:21–29CrossRefGoogle Scholar
  53. Newman RH, Hemmingson JA (1994) Carbon-13 NMR distinction between categories of molecular order and disorder in cellulose. Cellulose 2:95–110CrossRefGoogle Scholar
  54. Newman RH, Hill SJ, Harris PJ (2013) Wide-angle X-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol 163:1558–1567CrossRefGoogle Scholar
  55. Nicholas MP, Eryilmaz E, Ferrage F, Cowburn D, Ghose R (2010) Nuclear spin relaxation in isotropic and anisotropic media. Progr Nucl Magn Reson Spectrosc 57:111–158CrossRefGoogle Scholar
  56. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefGoogle Scholar
  57. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose I(alpha) from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRefGoogle Scholar
  58. Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF (2009) Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose 16:641–647CrossRefGoogle Scholar
  59. Prajapati BP, Suryawanshi RK, Agrawal S, Ghosh M, Kango N (2018) Characterization of cellulase from Aspergillus tubingensis NKBP-55 for generation of fermentable sugars from agricultural residues. Biores Technol 250:733–740CrossRefGoogle Scholar
  60. Pu Y, Zhang D, Singh PM, Ragauskas AJ (2008) The newly forestry biofuels sector. Biofuels Bioprod Biorefin 2:58–73CrossRefGoogle Scholar
  61. Ragauskas AJ, Nagy M, Kim DH, Eckert CA, Hallett JP, Liotta CL (2006a) From wood to fuels, integrating biofuels and pulp production. Ind Biotechnol 2:55–65CrossRefGoogle Scholar
  62. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA (2006b) The path forward for biofuels and biomaterials. Science 311:484–489ADSCrossRefGoogle Scholar
  63. Ramsey NF (1950) Magnetic shielding of nuclei in molecules. Phys Rev 78:699–703ADSCrossRefzbMATHGoogle Scholar
  64. Ramsey NF (1952) Chemical effects in nuclear magnetic resonance and in diamagnetic susceptibility. Phys Rev 86:243–246ADSCrossRefGoogle Scholar
  65. Rondeau-Mouro C, Bizot H, Bertrand D (2011) Chemometric analyses of the 1H–13C cross-polarization build-up of celluloses NMR spectra: a novel approach for characterizing the cellulose crystallite. Carbohydr Polym 84:539–549CrossRefGoogle Scholar
  66. Rubin E (2008) Genomics of cellulosic biofuels. Nature 454:841–845ADSCrossRefGoogle Scholar
  67. Saito H, Ando I, Ramamoorthy A (2010) Chemical shift tensor—the heart of NMR: insights into biological aspects of proteins. Progr Nucl Magn Reson Spectrosc 57:181–228CrossRefGoogle Scholar
  68. Samuel R, Pu Y, Foston M, Ragauskas AJ (2010) Solid-state NMR characterization of switchgrass cellulose after dilute acid pretreatment. Biofuels 1:85–90CrossRefGoogle Scholar
  69. Saxena RC, Adhikari DK, Goyal HB (2009) Biomass-based energy fuel through biochemical routes: a review. Renew Sustain Energy Rev 13:167–178CrossRefGoogle Scholar
  70. Simmons TJ, Mortimer JC, Bernardinelli OD, Poppler AC, Brown SP, deAzevedo ER, Dupree R, Dupree P (2016) Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat Commun 7:13902/1–13902/9ADSCrossRefGoogle Scholar
  71. Spiess HW (1978) NMR basic principles and progress, vol 15. Springer, BerlinGoogle Scholar
  72. Tarchevsky IA, Marchenko GN (1991) Cellulose conformation. Cellulose: biosynthesis and structure. Springer, Berlin, pp 156–173CrossRefGoogle Scholar
  73. Torchia DA (1978) The measurement of proton-enhanced carbon-13 T1 values by method which suppresses artifacts. J Magn Reson 30:613ADSGoogle Scholar
  74. Tycko R, Dabbagh G, Mirau PA (1989) Determination of chemical-shift-anisotropy lineshapes in a two-dimensional-magic-angle-spinning NMR experiment. J Magn Reson 85:265–274ADSGoogle Scholar
  75. VanderHart DL (1987) Natural abundance 13C-13C spin exchange in rigid crystalline organic solids. J Magn Reson 72:13–47ADSGoogle Scholar
  76. VanderHart DL, Atalla RH (1980) 13C NMR spectra of cellulose polymorphs. J Am Chem Soc 109:3249–3250Google Scholar
  77. VanderHart DL, Atalla RH (1981) Observation of high-resolution carbon-13 nuclear magnetic resonance of cellulose I related to morphology and crystal structure. Macromolecules 14:570–574ADSCrossRefGoogle Scholar
  78. VanderHart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state carbon-13 NMR. Macromolecules 17:1455–1462ADSCrossRefGoogle Scholar
  79. Vittadini E, Dickinson LC, Chinachoti P (2001) 1H and 2H NMR mobility in cellulose. Carbohydr Polym 46:49–57CrossRefGoogle Scholar
  80. Walder BJ, Dey KK, Kaseman DC, Baltisberger JH, Grandinetti PJ (2013) Sideband separation experiments in NMR with phase incremented echo train acquisition. J Chem Phys 138:174203-1–174203-12ADSCrossRefGoogle Scholar
  81. Wang T, Yang H, Kubicki JD, Hong M (2016) Cellulose structural polymorphism in plant primary cell walls investigated by high-field 2D solid state NMR spectroscopy and density functional theory calculations. Biomacromol 17:2210–2222CrossRefGoogle Scholar
  82. Wei Y, Lee DK, Ramamoorthy A (2001) Solid-state 13C NMR chemical shift anisotropy tensors of polypeptides. J Am Chem Soc 123:6118–6126CrossRefGoogle Scholar
  83. White PB, Wang T, Park YB, Cosgrove DJ, Hong M (2014) Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana form polarization transfer solid-state NMR. J Am Chem Soc 136:10399–10409CrossRefGoogle Scholar
  84. Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312:123–129CrossRefGoogle Scholar
  85. Yang H, Wang T, Oehme D, Petridis L, Hong M, Kubicki JD (2018) Structural factors affecting 13C NMR chemical shifts of cellulose: a computational study. Cellulose 25:23–36CrossRefGoogle Scholar
  86. Yarim-Agaev Y, Tutujian PN, Waugh JS (1982) Sample spinning at the magic angle with rotation-synchronized RF pulses. J Magn Reson 47:51–60ADSGoogle Scholar
  87. Zhang M, Geng Z, Yu Y (2011) Density functional theory (DFT) study on the dehydration of cellulose. Energy Fuels 25:2664–2670CrossRefGoogle Scholar
  88. Zuckerstatter G, Terinte N, Sixta H, Schuster KC (2012) Novel insight into cellulose supramolecular structure through 13C CP-MAS NMR spectroscopy and paramagnetic relaxation enhancement. Carbohydr Polym 93:122–128CrossRefGoogle Scholar
  89. Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of PhysicsDr. Harisingh Gour Central UniversitySagarIndia
  2. 2.Department of MicrobiologyDr. Harisingh Gour Central UniversitySagarIndia

Personalised recommendations