Partial alignment, residual dipolar couplings and molecular symmetry in solution NMR

  • Justin L. LorieauEmail author


Residual dipolar couplings (RDCs) and residual anisotropic chemical shifts (RACSs) are produced by the partial alignment of solution NMR samples. RDCs and RACSs yield high-resolution structural and dynamic information on the orientation of bonds and chemical groups in molecules. Many molecules form oligomers or have intrinsic symmetries, which may simplify the analysis of their partial alignment datasets. In this report, we explore the theory of partial alignment using an irreducible spherical representation, and we investigate the impact of molecular symmetry on the alignment of molecules. Though previous studies have reported simplified relationships on the partial alignment of molecules bearing different symmetry groups, we show that these simplified relationships may not be universal and only apply to a limited set of systems.


Wigner rotation RDC Oligomer 



This work was supported by the National Science Foundation under Grant No. MCB1651598 and funds from the Department of Chemistry at the University of Illinois at Chicago.

Supplementary material

10858_2019_256_MOESM1_ESM.pdf (222 kb)
Electronic supplementary material 1 (PDF 211 kb)


  1. Al-Hashimi HM, Bolon PJ, Prestegard JH (2000) Molecular symmetry as an aid to geometry determination in ligand protein complexes. J Magn Reson 142(1):153–158. ADSCrossRefGoogle Scholar
  2. Batchelder L, Niu C, Torchia D (1983) Methyl reorientation in polycrystalline amino acids and peptides: a deuteron NMR spin-lattice relaxation study. J Am Chem Soc 105(9):2228–2231. CrossRefGoogle Scholar
  3. Bax A (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci 12:1–16. CrossRefGoogle Scholar
  4. Bax A, Kontaxis G, Tjandra N (2001) Dipolar couplings in macromolecular structure determination. Methods Enzymol 339(1997):127–174CrossRefGoogle Scholar
  5. Blackledge M (2005) Recent progress in the study of biomolecular structure and dynamics in solution from residual dipolar couplings. Prog NMR Spectrosc 46(1):23–61. CrossRefGoogle Scholar
  6. Bolon PJ, Al-Hashimi HM, Prestegard JH (1999) Residual dipolar coupling derived orientational constraints on ligand geometry in a 53 kDa protein-ligand complex. J Mol Biol 293(1):107–115. CrossRefGoogle Scholar
  7. Cady SD, Schmidt-Rohr K, Wang J, Soto CS, Degrado WF, Hong M (2010) Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463(7281):689–692. ADSCrossRefGoogle Scholar
  8. Clore GM, Garrett DS (1999) R-factor, free R, and complete cross-validation for dipolar coupling refinement of NMR structures. J Am Chem Soc 121(39):9008–9012. CrossRefGoogle Scholar
  9. Cornilescu G, Bax A (2000) Measurement of proton, nitrogen, and carbonyl chemical shielding anisotropies in a protein dissolved in a dilute liquid crystalline phase. J Am Chem Soc 122(41):10143–10154. CrossRefGoogle Scholar
  10. Cornilescu G, Marquardt JL, Ottiger M, Bax A (1998) Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J Am Chem Soc 120(27):6836–6837. CrossRefGoogle Scholar
  11. Dong RY (1997) Nuclear magnetic resonance of liquid crystals. Partially ordered systems. Springer, New York. CrossRefGoogle Scholar
  12. Goldman M (1988) Quantum description of high-resolution NMR in liquids. Oxford University Press, OxfordGoogle Scholar
  13. Hansen MR, Mueller L, Pardi A (1998) Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat Struct Biol 5(12):1065–1074. CrossRefGoogle Scholar
  14. Jain NU, Wyckoff TJ, Raetz CR, Prestegard JH (2004) Rapid analysis of large protein-protein complexes using NMR-derived orientational constraints: the 95 kDa complex of LpxA with acyl carrier protein. J Mol Biol 343(5):1379–1389. CrossRefGoogle Scholar
  15. Jc Hus, Salmon L, Bouvignies G, Lotze J, Blackledge M, Brüschweiler R (2008) 16-fold degeneracy of peptide plane orientations from residual dipolar couplings: analytical treatment and implications for protein structure determination. J Am Chem Soc 130(47):15927–15937. CrossRefGoogle Scholar
  16. Keniry MA, Rothgeb TM, Smith RL, Gutowsky HS, Oldfield E (1983) Nuclear magnetic resonance studies of amino acids and proteins. Side-chain mobility of methionine in the crystalline amino acid and in crystalline sperm whale (Physeter catodon) myoglobin. Biochemistry 22(8):1917–1926. CrossRefGoogle Scholar
  17. Lorieau JL (2017) Mollib: a molecular and NMR data analysis software. J Biomol NMR 69(2):69–80. CrossRefGoogle Scholar
  18. Lorieau J, Yao L, Bax A (2008) Liquid crystalline phase of G-tetrad DNA for NMR study of detergent-solubilized proteins. J Am Chem Soc 130(24):7536–7537. CrossRefGoogle Scholar
  19. Losonczi JA, Andrec M, Fischer MW, Prestegard JH (1999) Order matrix analysis of residual dipolar couplings using singular value decomposition. J Magn Reson 138(2):334–42. ADSCrossRefGoogle Scholar
  20. Mack JW, Torchia DA (1991) A deuteron NMR study of the molecular dynamics of solid cyclopentane. J Phys Chem 95(11):4207–4213. CrossRefGoogle Scholar
  21. Maltsev AS, Grishaev A, Roche J, Zasloff M, Bax A (2014) Improved cross validation of a static ubiquitin structure derived from high precision residual dipolar couplings measured in a drug-based liquid crystalline phase. J Am Chem Soc 136(10):3752–5. CrossRefGoogle Scholar
  22. Oxenoid K, Chou JJ (2005) The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc Natl Acad Sci USA 102(31):10870–10875. ADSCrossRefGoogle Scholar
  23. Reardon PN, Sage H, Dennison SM, Martin JW, Donald BR, Alam SM, Haynes BF, Spicer LD (2014) Structure of an HIV-1-neutralizing antibody target, the lipid-bound gp41 envelope membrane proximal region trimer. Proc Natl Acad Sci 111(4):1391–1396. ADSCrossRefGoogle Scholar
  24. Respondek M, Madl T, Göbl C, Golser R, Zangger K (2007) Mapping the orientation of helices in micelle-bound peptides by paramagnetic relaxation waves. J Am Chem Soc 129(16):5228–34. CrossRefGoogle Scholar
  25. Rose ME (1957) Elementary theory of angular momentum. Dover Publications Inc., New York. CrossRefzbMATHGoogle Scholar
  26. Sarkar S, Young P, Torchia D (1986) Ring dynamics of DL-proline and DL-proline hydrochloride in the solid state: a deuterium nuclear magnetic resonance study. J Am Chem Soc 108:6459–6464. CrossRefGoogle Scholar
  27. Saupe A (1968) Recent results in the field of liquid crystals. Angew Chem Int Ed Engl 7(2):97–112. CrossRefGoogle Scholar
  28. Schmidt-Rohr K, Spiess H (1994) Multidimensional solid-state NMR and polymers. Academic Press Inc., San Diego, CAGoogle Scholar
  29. Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451(7178):591–595. ADSCrossRefGoogle Scholar
  30. Shi L, Traaseth NJ, Verardi R, Gustavsson M, Gao J, Veglia G (2011) Paramagnetic-based NMR restraints lift residual dipolar coupling degeneracy in multidomain detergent-solubilized membrane proteins. J Am Chem Soc 133(7):2232–2241. CrossRefGoogle Scholar
  31. Steigel A, Spiess HW (1978) Dynamic NMR spectroscopy. Springer, New YorkCrossRefGoogle Scholar
  32. Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278(5340):1111–1114. ADSCrossRefGoogle Scholar
  33. Tolman JR, Flanagan JM, Ma Kennedy, Prestegard JH (1995) Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc Natl Acad Sci USA 92(20):9279–9283ADSCrossRefGoogle Scholar
  34. Torchia DA (1984) Solid state NMR internal dynamics !. PoLAR 21:125–144Google Scholar
  35. Torchia DA (2015) NMR studies of dynamic biomolecular conformational ensembles. Prog Nucl Magn Reson Spectrosc 84–85:14–32. CrossRefGoogle Scholar
  36. Tycko R, Blanco F, Ishii Y (2000) Alignment of biopolymers in strained gels: a new way to create detectable dipole–dipole couplings in high-resolution biomolecular NMR. J Am Chem Soc 122(17):9340–9341. CrossRefGoogle Scholar
  37. Zweckstetter M, Bax A (2000) Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR [11]. J Am Chem Soc 122(15):3791–3792. CrossRefGoogle Scholar
  38. Zweckstetter M, Hummer G, Bax A (2004) Prediction of charge-induced molecular alignment of biomolecules dissolved in dilute liquid-crystalline phases. Biophys J 86(6):3444–3460. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations