Journal of Biomolecular NMR

, Volume 73, Issue 6–7, pp 319–332 | Cite as

NMR: an essential structural tool for integrative studies of T cell development, pMHC ligand recognition and TCR mechanobiology

  • Robert J. Mallis
  • Kristine N. Brazin
  • Jonathan S. Duke-Cohan
  • Wonmuk Hwang
  • Jia-huai Wang
  • Gerhard Wagner
  • Haribabu ArthanariEmail author
  • Matthew J. LangEmail author
  • Ellis L. ReinherzEmail author


Early studies of T cell structural biology using X-ray crystallography, surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) focused on a picture of the αβT cell receptor (αβTCR) component domains and their cognate ligands (peptides bound to MHC molecules, i.e. pMHCs) as static interaction partners. Moving forward requires integrating this corpus of data with dynamic technologies such as NMR, molecular dynamics (MD) simulations and real-time single molecule (SM) studies exemplified by optical tweezers (OT). NMR bridges relevant timescales and provides the potential for an all-atom dynamic description of αβTCR components prior to and during interactions with binding partners. SM techniques have opened up vistas in understanding the non-equilibrium nature of T cell signaling through the introduction of force-mediated binding measurements into the paradigm for T cell function. In this regard, bioforces consequent to T-lineage cell motility are now perceived as placing piconewton (pN)-level loads on single receptor-pMHC bonds to impact structural change and αβT-lineage biology, including peptide discrimination, cellular activation, and developmental progression. We discuss herein essential NMR technologies in illuminating the role of ligand binding in the preT cell receptor (preTCR), the αβTCR developmental precursor, and convergence of NMR, SM and MD data in advancing our comprehension of T cell development. More broadly we review the central hypothesis that the αβTCR is a mechanosensor, fostered by breakthrough NMR-based structural insights. Collectively, elucidating dynamic aspects through the integrative use of NMR, SM, and MD shall advance fundamental appreciation of the mechanism of T cell signaling as well as inform translational efforts in αβTCR and chimeric T cell (CAR-T) immunotherapies and T cell vaccinology.


Integrative structural biology Nuclear magnetic resonance spectroscopy (NMR) Optical tweezers Single molecule Molecular dynamics (MD) T cell receptor (TCR) PreT cell receptor (preTCR) 



Grant support: AI136301 to MJL; GM047467, AI0037581, and EB002026 to GW; R01AI136960 and R56AI138489 to ELR.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aivazian D, Stern LJ (2000) Phosphorylation of T cell receptor zeta is regulated by a lipid dependent folding transition. Nat Struct Biol 7:1023–1026CrossRefGoogle Scholar
  2. Alcover A, Mariuzza RA, Ermonval M, Acuto O (1990) Lysine 271 in the transmembrane domain of the T-cell antigen receptor beta chain is necessary for its assembly with the CD3 complex but not for alpha/beta dimerization. J Biol Chem 265:4131–4135Google Scholar
  3. Anishkin A, Kung C (2013) Stiffened lipid platforms at molecular force foci. Proc Natl Acad Sci USA 110:4886–4892ADSCrossRefGoogle Scholar
  4. Bäckström BT, Milia E, Peter A, Jaureguiberry B, Baldari CT, Palmer E (1996) A motif within the T cell receptor alpha chain constant region connecting peptide domain controls antigen responsiveness. Immunity 5:437–447CrossRefGoogle Scholar
  5. Battiste JL, Wagner G (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39:5355–5365CrossRefGoogle Scholar
  6. Bentley GA, Boulot G, Karjalainen K, Mariuzza RA (1995) Crystal structure of the beta chain of a T cell antigen receptor. Science 267:1984–1987ADSCrossRefGoogle Scholar
  7. Birnbaum ME, Berry R, Hsiao Y-S, Chen Z, Shingu-Vazquez MA, Yu X, Waghray D, Fischer S, McCluskey J, Rossjohn J, Walz T, Garcia KC (2014) Molecular architecture of the αβ T cell receptor-CD3 complex. Proc Natl Acad Sci USA 111:17576–17581ADSCrossRefGoogle Scholar
  8. Blumberg RS, Alarcon B, Sancho J, McDermott FV, Lopez P, Breitmeyer J, Terhorst C (1990) Assembly and function of the T cell antigen receptor. Requirement of either the lysine or arginine residues in the transmembrane region of the alpha chain. J Biol Chem 265:14036–14043Google Scholar
  9. Brazin KN, Mallis RJ, Li C, Keskin DB, Arthanari H, Gao Y, Wu S-L, Karger BL, Wagner G, Reinherz EL (2014) Constitutively oxidized CXXC motifs within the CD3 heterodimeric ectodomains of the T cell receptor complex enforce the conformation of juxtaposed segments. J Biol Chem 289:18880–18892CrossRefGoogle Scholar
  10. Brazin KN, Mallis RJ, Das DK, Feng Y, Hwang W, Wang J-H, Wagner G, Lang MJ, Reinherz EL (2015) Structural features of the αβTCR mechanotransduction apparatus that promote pMHC discrimination. Front Immunol 6:441CrossRefGoogle Scholar
  11. Brazin KN, Mallis RJ, Boeszoermenyi A, Feng Y, Yoshizawa A, Reche PA, Kaur P, Bi K, Hussey RE, Duke-Cohan JS, Song L, Wagner G, Arthanari H, Lang MJ, Reinherz EL (2018) The T cell antigen receptor α transmembrane domain coordinates triggering through regulation of bilayer immersion and CD3 subunit associations. Immunity 49:829–841CrossRefGoogle Scholar
  12. Call ME, Pyrdol J, Wiedmann M, Wucherpfennig KW (2002) The organizing principle in the formation of the T cell receptor-CD3 complex. Cell 111:967–979CrossRefGoogle Scholar
  13. Call ME, Schnell JR, Xu C, Lutz RA, Chou JJ, Wucherpfennig KW (2006) The structure of the zetazeta transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 127:355–368CrossRefGoogle Scholar
  14. Caplan S, Zeliger S, Wang L, Baniyash M (1995) Cell-surface-expressed T-cell antigen-receptor zeta chain is associated with the cytoskeleton. Proc Natl Acad Sci USA 92:4768–4772ADSCrossRefGoogle Scholar
  15. Carleton M, Ruetsch NR, Berger MA, Rhodes M, Kaptik S, Wiest DL (1999) Signals transduced by CD3epsilon, but not by surface pre-TCR complexes, are able to induce maturation of an early thymic lymphoma in vitro. J Immunol 163:2576–2585Google Scholar
  16. Comrie WA, Burkhardt JK (2016) Action and traction: Cytoskeletal control of receptor triggering at the immunological synapse. Front Immunol 7:68CrossRefGoogle Scholar
  17. Coote PW, Robson SA, Dubey A, Boeszoermenyi A, Zhao M, Wagner G, Arthanari H (2018) Optimal control theory enables homonuclear decoupling without Bloch-Siegert shifts in NMR spectroscopy. Nat Commun 9:3014ADSCrossRefGoogle Scholar
  18. Crump AL, Grusby MJ, Glimcher LH, Cantor H (1993) Thymocyte development in major histocompatibility complex-deficient mice: evidence for stochastic commitment to the CD4 and CD8 lineages. Proc Natl Acad Sci U S A 90:10739–10743ADSCrossRefGoogle Scholar
  19. Das DK, Feng Y, Mallis RJ, Li X, Keskin DB, Hussey RE, Brady SK, Wang J-H, Wagner G, Reinherz EL, Lang MJ (2015) Force-dependent transition in the T-cell receptor β-subunit allosterically regulates peptide discrimination and pMHC bond lifetime. Proc Natl Acad Sci U S A 112:1517–1522ADSCrossRefGoogle Scholar
  20. Das DK, Mallis RJ, Duke-Cohan JS, Hussey RE, Tetteh PW, Hilton M, Wagner G, Lang MJ, Reinherz EL (2016) Pre-T cell receptors (Pre-TCRs) leverage Vβ complementarity determining regions (CDRs) and hydrophobic patch in mechanosensing thymic self-ligands. J Biol Chem 291:25292–25305CrossRefGoogle Scholar
  21. Davis MM, Bjorkman PJ (1988) T-cell antigen receptor genes and T-cell recognition. Nature 334:395–402ADSCrossRefGoogle Scholar
  22. Feng Y, Brazin KN, Kobayashi E, Mallis RJ, Reinherz EL, Lang MJ (2017) Mechanosensing drives acuity of αβ T-cell recognition. Proc Natl Acad Sci USA 114:E8204–E8213CrossRefGoogle Scholar
  23. Feng Y, Reinherz EL, Lang MJ (2018) αβ T cell receptor mechanosensing forces out serial engagement. Trends Immunol 39:596–609CrossRefGoogle Scholar
  24. Frueh DP, Leed A, Arthanari H, Koglin A, Walsh CT, Wagner G (2009) Time-shared HSQC-NOESY for accurate distance constraints measured at high-field in (15)N-(13)C-ILV methyl labeled proteins. J Biomol NMR 45:311–318CrossRefGoogle Scholar
  25. Gagnon E, Schubert DA, Gordo S, Chu HH, Wucherpfennig KW (2012) Local changes in lipid environment of TCR microclusters regulate membrane binding by the CD3ε cytoplasmic domain. J Exp Med 209:2423–2439CrossRefGoogle Scholar
  26. Ghendler Y, Teng MK, Liu JH, Witte T, Liu J, Kim KS, Kern P, Chang HC, Wang JH, Reinherz EL (1998) Differential thymic selection outcomes stimulated by focal structural alteration in peptide/major histocompatibility complex ligands. Proc Natl Acad Sci USA 95:10061–10066ADSCrossRefGoogle Scholar
  27. Hare BJ, Wyss DF, Osburne MS, Kern PS, Reinherz EL, Wagner G (1999) Structure, specificity and CDR mobility of a class II restricted single-chain T-cell receptor. Nat Struct Biol 6:574–581CrossRefGoogle Scholar
  28. Hass MAS, Ubbink M (2014) Structure determination of protein-protein complexes with long-range anisotropic paramagnetic NMR restraints. Curr Opin Struct Biol 24:45–53CrossRefGoogle Scholar
  29. He Y, Rangarajan S, Kerzic M, Luo M, Chen Y, Wang Q, Yin Y, Workman CJ, Vignali KM, Vignali DAA, Mariuzza RA, Orban J (2015) Identification of the docking site for CD3 on the T cell receptor β chain by solution NMR. J Biol Chem 290:19796–19805CrossRefGoogle Scholar
  30. Hoerter JAH, Brzostek J, Artyomov MN, Abel SM, Casas J, Rybakin V, Ampudia J, Lotz C, Connolly JM, Chakraborty AK, Gould KG, Gascoigne NRJ (2013) Coreceptor affinity for MHC defines peptide specificity requirements for TCR interaction with coagonist peptide-MHC. J Exp Med 210:1807–1821CrossRefGoogle Scholar
  31. Huang R, Pérez F, Kay LE (2017) Probing the cooperativity of Thermoplasma acidophilum proteasome core particle gating by NMR spectroscopy. Proc Natl Acad Sci USA 114:E9846–E9854CrossRefGoogle Scholar
  32. Hwang W, Lang MJ, Karplus M (2017) Kinesin motility is driven by subdomain dynamics. eLife 6:e28948CrossRefGoogle Scholar
  33. Imarai M, Goyarts EC, van Bleek GM, Nathenson SG (1995) Diversity of T cell receptors specific for the VSV antigenic peptide (N52-59) bound by the H-2Kb class I molecule. Cell Immunol 160:33–42CrossRefGoogle Scholar
  34. Irving BA, Alt FW, Killeen N (1998) Thymocyte development in the absence of pre-T cell receptor extracellular immunoglobulin domains. Science 280:905–908ADSCrossRefGoogle Scholar
  35. Jones LL, Brophy SE, Bankovich AJ, Colf LA, Hanick NA, Garcia KC, Kranz DM (2006) Engineering and characterization of a stabilized alpha1/alpha2 module of the class I major histocompatibility complex product Ld. J Biol Chem 281:25734–25744CrossRefGoogle Scholar
  36. Ju L, Chen Y, Rushdi MN, Chen W, Zhu C (2017) Two-dimensional analysis of cross-junctional molecular interaction by force probes. Methods Mol Biol 1584:231–258CrossRefGoogle Scholar
  37. Kay LE (2011) Solution NMR spectroscopy of supra-molecular systems, why bother? A methyl-TROSY view. J Magn Reson 210:159–170ADSCrossRefGoogle Scholar
  38. Kerfah R, Plevin MJ, Sounier R, Gans P, Boisbouvier J (2015a) Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins. Curr Opin Struct Biol 32:113–122CrossRefGoogle Scholar
  39. Kerfah R, Hamelin O, Boisbouvier J, Marion D (2015b) CH3-specific NMR assignment of alanine, isoleucine, leucine and valine methyl groups in high molecular weight proteins using a single sample. J Biomol NMR 63:389–402CrossRefGoogle Scholar
  40. Kim ST, Takeuchi K, Sun Z-YJ, Touma M, Castro CE, Fahmy A, Lang MJ, Wagner G, Reinherz EL (2009) The alphabeta T cell receptor is an anisotropic mechanosensor. J Biol Chem 284:31028–31037CrossRefGoogle Scholar
  41. Kim ST, Shin Y, Brazin K, Mallis RJ, Sun Z-YJ, Wagner G, Lang MJ, Reinherz EL (2012) TCR mechanobiology: torques and tunable structures linked to early T cell signaling. Front Immunol 3:76CrossRefGoogle Scholar
  42. Knapp B, Dunbar J, Deane CM (2014) Large scale characterization of the LC13 TCR and HLA-B8 structural landscape in reaction to 172 altered peptide ligands: a molecular dynamics simulation study. PLoS Comput Biol 10:e1003748ADSCrossRefGoogle Scholar
  43. Knapp B, Dunbar J, Alcala M, Deane CM (2017) Variable regions of antibodies and T-cell receptors may not be sufficient in molecular simulations investigating binding. J Chem Theory Comput 13:3097–3105CrossRefGoogle Scholar
  44. Koller BH, Marrack P, Kappler JW, Smithies O (1990) Normal development of mice deficient in beta 2M, MHC class I proteins, and CD8 + T cells. Science 248:1227–1230ADSCrossRefGoogle Scholar
  45. Krshnan L, Park S, Im W, Call MJ, Call ME (2016) A conserved αβ transmembrane interface forms the core of a compact T-cell receptor-CD3 structure within the membrane. Proc Natl Acad Sci USA 113:E6649–E6658CrossRefGoogle Scholar
  46. Li H, Van Vranken S, Zhao Y, Li Z, Guo Y, Eisele L, Li Y (2005) Crystal structures of T cell receptor (beta) chains related to rheumatoid arthritis. Protein Sci 14:3025–3038CrossRefGoogle Scholar
  47. Liu B, Chen W, Evavold BD, Zhu C (2014) Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157:357–368CrossRefGoogle Scholar
  48. Liu Z, Liu Y, Chang Y, Seyf HR, Henry A, Mattheyses AL, Yehl K, Zhang Y, Huang Z, Salaita K (2016) Nanoscale optomechanical actuators for controlling mechanotransduction in living cells. Nat Methods 13:143–146CrossRefGoogle Scholar
  49. Loria JP, Berlow RB, Watt ED (2008) Characterization of enzyme motions by solution NMR relaxation dispersion. Acc Chem Res 41:214–221CrossRefGoogle Scholar
  50. Luoma AM, Castro CD, Mayassi T, Bembinster LA, Bai L, Picard D, Anderson B, Scharf L, Kung JE, Sibener LV, Savage PB, Jabri B, Bendelac A, Adams EJ (2013) Crystal structure of Vδ1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells. Immunity 39:1032–1042CrossRefGoogle Scholar
  51. Mallis RJ, Bai K, Arthanari H, Hussey RE, Handley M, Li Z, Chingozha L, Duke-Cohan JS, Lu H, Wang J-H, Zhu C, Wagner G, Reinherz EL (2015) Pre-TCR ligand binding impacts thymocyte development before αβTCR expression. Proc Natl Acad Sci USA 112:8373–8378ADSCrossRefGoogle Scholar
  52. Mallis RJ, Reinherz EL, Wagner G, Arthanari H (2016) Backbone resonance assignment of N15, N30 and D10 T cell receptor β subunits. Biomol NMR Assign 10:35–39CrossRefGoogle Scholar
  53. Mallis RJ, Arthanari H, Lang MJ, Reinherz EL, Wagner G (2018) NMR-directed design of pre-TCRβ and pMHC molecules implies a distinct geometry for pre-TCR relative to αβTCR recognition of pMHC. J Biol Chem 293:754–766CrossRefGoogle Scholar
  54. Manolios N, Bonifacino JS, Klausner RD (1990) Transmembrane helical interactions and the assembly of the T cell receptor complex. Science 249:274–277ADSCrossRefGoogle Scholar
  55. Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C (2003) Direct observation of catch bonds involving cell-adhesion molecules. Nature 423:190–193ADSCrossRefGoogle Scholar
  56. Maynard J, Petersson K, Wilson DH, Adams EJ, Blondelle SE, Boulanger MJ, Wilson DB, Garcia KC (2005) Structure of an autoimmune T cell receptor complexed with class II peptide-MHC: insights into MHC bias and antigen specificity. Immunity 22:81–92Google Scholar
  57. Milbradt AG, Arthanari H, Takeuchi K, Boeszoermenyi A, Hagn F, Wagner G (2015) Increased resolution of aromatic cross peaks using alternate 13C labeling and TROSY. J Biomol NMR 62:291–301CrossRefGoogle Scholar
  58. Mishra SH, Harden BJ, Frueh DP (2014) A 3D time-shared NOESY experiment designed to provide optimal resolution for accurate assignment of NMR distance restraints in large proteins. J Biomol NMR 60:265–274CrossRefGoogle Scholar
  59. Mohtashami M, Shah DK, Nakase H, Kianizad K, Petrie HT, Zúñiga-Pflücker JC (2010) Direct comparison of Dll1- and Dll4-mediated Notch activation levels shows differential lymphomyeloid lineage commitment outcomes. J Immunol 185:867–876CrossRefGoogle Scholar
  60. Natarajan A, Nadarajah V, Felsovalyi K, Wang W, Jeyachandran VR, Wasson RA, Cardozo T, Bracken C, Krogsgaard M (2016) Structural model of the extracellular assembly of the TCR-CD3 complex. Cell Rep 14:2833–2845CrossRefGoogle Scholar
  61. Natarajan K, McShan AC, Jiang J, Kumirov VK, Wang R, Zhao H, Schuck P, Tilahun ME, Boyd LF, Ying J, Bax A, Margulies DH, Sgourakis NG (2017) An allosteric site in the T-cell receptor Cβ domain plays a critical signalling role. Nat Commun 8:15260ADSCrossRefGoogle Scholar
  62. Nitsche C, Otting G (2017) Pseudocontact shifts in biomolecular NMR using paramagnetic metal tags. Prog Nucl Magn Reson Spectrosc 98–99:20–49CrossRefGoogle Scholar
  63. Novotny J, Ganju RK, Smiley ST, Hussey RE, Luther MA, Recny MA, Siliciano RF, Reinherz EL (1991) A soluble, single-chain T-cell receptor fragment endowed with antigen-combining properties. Proc Natl Acad Sci U S A 88:8646–8650ADSCrossRefGoogle Scholar
  64. Pang SS, Berry R, Chen Z, Kjer-Nielsen L, Perugini MA, King GF, Wang C, Chew SH, La Gruta NL, Williams NK, Beddoe T, Tiganis T, Cowieson NP, Godfrey DI, Purcell AW, Wilce MCJ, McCluskey J, Rossjohn J (2010) The structural basis for autonomous dimerization of the pre-T-cell antigen receptor. Nature 467:844–848ADSCrossRefGoogle Scholar
  65. Pervushin K, Riek R, Wider G, Wüthrich K (1998) Transverse relaxation-optimized spectroscopy (TROSY) for NMR studies of aromatic spin systems in 13C-labeled proteins. J Am Chem Soc 120:6394–6400CrossRefGoogle Scholar
  66. Pilla KB, Otting G, Huber T (2016) Pseudocontact shift-driven iterative resampling for 3D structure determinations of large proteins. J Mol Biol 428:522–532CrossRefGoogle Scholar
  67. Pritišanac I, Degiacomi MT, Alderson TR, Carneiro MG, Ab E, Siegal G, Baldwin AJ (2017) Automatic assignment of Methyl-NMR spectra of supramolecular machines using graph theory. J Am Chem Soc 139:9523–9533CrossRefGoogle Scholar
  68. Rangarajan S, He Y, Chen Y, Kerzic MC, Ma B, Gowthaman R, Pierce BG, Nussinov R, Mariuzza RA, Orban J (2018) Peptide-MHC (pMHC) binding to a human antiviral T cell receptor induces long-range allosteric communication between pMHC- and CD3-binding sites. J Biol Chem 293:15991–16005CrossRefGoogle Scholar
  69. Reinherz EL, Tan K, Tang L, Kern P, Liu J, Xiong Y, Hussey RE, Smolyar A, Hare B, Zhang R, Joachimiak A, Chang HC, Wagner G, Wang J (1999) The crystal structure of a T cell receptor in complex with peptide and MHC class II. Science 286:1913–1921CrossRefGoogle Scholar
  70. Robson SA, Takeuchi K, Boeszoermenyi A, Coote PW, Dubey A, Hyberts S, Wagner G, Arthanari H (2018) Mixed pyruvate labeling enables backbone resonance assignment of large proteins using a single experiment. Nat Commun 9:356ADSCrossRefGoogle Scholar
  71. Rudolph MG, Stanfield RL, Wilson IA (2006) How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24:419–466CrossRefGoogle Scholar
  72. Ruel-Gariépy E, Leroux J-C (2004) In situ-forming hydrogels–review of temperature-sensitive systems. Eur J Pharm Biopharm 58:409–426CrossRefGoogle Scholar
  73. Salzmann M, Pervushin K, Wider G, Senn H, Wüthrich K (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci USA 95:13585–13590ADSCrossRefGoogle Scholar
  74. Shinkai Y, Alt FW (1994) CD3 epsilon-mediated signals rescue the development of CD4+ CD8+ thymocytes in RAG-2−/− mice in the absence of TCR beta chain expression. Int Immunol 6:995–1001CrossRefGoogle Scholar
  75. Sibener LV, Fernandes RA, Kolawole EM, Carbone CB, Liu F, McAffee D, Birnbaum ME, Yang X, Su LF, Yu W, Dong S, Gee MH, Jude KM, Davis MM, Groves JT, Goddard WA, Heath JR, Evavold BD, Vale RD, Garcia KC (2018) Isolation of a structural mechanism for uncoupling T cell receptor signaling from peptide-MHC binding. Cell 174:672–687.e27CrossRefGoogle Scholar
  76. Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–622CrossRefGoogle Scholar
  77. Stockslager MA, Bagnall JS, Hecht VC, Hu K, Aranda-Michel E, Payer K, Kimmerling RJ, Manalis SR (2017) Microfluidic platform for characterizing TCR-pMHC interactions. Biomicrofluidics 11:064103CrossRefGoogle Scholar
  78. Sun ZJ, Kim KS, Wagner G, Reinherz EL (2001) Mechanisms contributing to T cell receptor signaling and assembly revealed by the solution structure of an ectodomain fragment of the CD3 epsilon gamma heterodimer. Cell 105:913–923CrossRefGoogle Scholar
  79. Sun Z-YJ, Kim ST, Kim IC, Fahmy A, Reinherz EL, Wagner G (2004) Solution structure of the CD3epsilondelta ectodomain and comparison with CD3epsilongamma as a basis for modeling T cell receptor topology and signaling. Proc Natl Acad Sci USA 101:16867–16872ADSCrossRefGoogle Scholar
  80. Sundberg EJ, Li H, Llera AS, McCormick JK, Tormo J, Schlievert PM, Karjalainen K, Mariuzza RA (2002) Structures of two streptococcal superantigens bound to TCR beta chains reveal diversity in the architecture of T cell signaling complexes. Structure 10:687–699CrossRefGoogle Scholar
  81. Takahashi H, Nakanishi T, Kami K, Arata Y, Shimada I (2000) A novel NMR method for determining the interfaces of large protein-protein complexes. Nat Struct Biol 7:220–223CrossRefGoogle Scholar
  82. Teng X, Hwang W (2018) Effect of methylation on local mechanics and hydration structure of DNA. Biophys J 114:1791–1803CrossRefGoogle Scholar
  83. Teng MK, Smolyar A, Tse AG, Liu JH, Liu J, Hussey RE, Nathenson SG, Chang HC, Reinherz EL, Wang JH (1998) Identification of a common docking topology with substantial variation among different TCR-peptide-MHC complexes. Curr Biol 8:409–412CrossRefGoogle Scholar
  84. Touma M, Sun Z-YJ, Clayton LK, Marissen WE, Kruisbeek AM, Wagner G, Reinherz EL (2007) Importance of the CD3gamma ectodomain terminal beta-strand and membrane proximal stalk in thymic development and receptor assembly. J Immunol 178:3668–3679CrossRefGoogle Scholar
  85. Vallurupalli P, Kay LE (2013) Probing slow chemical exchange at carbonyl sites in proteins by chemical exchange saturation transfer NMR spectroscopy. Angew Chem 52:4156–4159CrossRefGoogle Scholar
  86. Vallurupalli P, Bouvignies G, Kay LE (2012) Studying “invisible” excited protein states in slow exchange with a major state conformation. J Am Chem Soc 134:8148–8161CrossRefGoogle Scholar
  87. van Mameren J, Peterman EJG, Wuite GJL (2008) See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins. Nucleic Acids Res 36:4381–4389CrossRefGoogle Scholar
  88. van Mameren J, Vermeulen K, Wuite GJL, Peterman EJG (2018) A polarized view on DNA under tension. J Chem Phys 148:123306ADSCrossRefGoogle Scholar
  89. Wang J-h, Reinherz EL (2012) The structural basis of alpha-beta T-lineage immune recognition: TCR docking topologies, mechanotransduction, and co-receptor function. Immunol Rev 250:102–119CrossRefGoogle Scholar
  90. Wang J, Lim K, Smolyar A, Teng M, Liu J, Tse AG, Liu J, Hussey RE, Chishti Y, Thomson CT, Sweet RM, Nathenson SG, Chang HC, Sacchettini JC, Reinherz EL (1998) Atomic structure of an alphabeta T cell receptor (TCR) heterodimer in complex with an anti-TCR fab fragment derived from a mitogenic antibody. EMBO J 17:10–26CrossRefGoogle Scholar
  91. Wang J-h, Mallis RJ, Reinherz EL (2008) Immunodominant-peptide recognition: beta testing TCRalphabeta. Immunity 28:139–141CrossRefGoogle Scholar
  92. Xu C, Gagnon E, Call ME, Schnell JR, Schwieters CD, Carman CV, Chou JJ, Wucherpfennig KW (2008) Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell 135:702–713CrossRefGoogle Scholar
  93. Xu B, Pizarro JC, Holmes MA, McBeth C, Groh V, Spies T, Strong RK (2011) Crystal structure of a gammadelta T-cell receptor specific for the human MHC class I homolog MICA. Proc Natl Acad Sci USA 108:2414–2419ADSCrossRefGoogle Scholar
  94. Zhou B, Chen Q, Mallis RJ, Zhang H, Liu J-H, Reinherz EL, Wang J-H (2011) A conserved hydrophobic patch on Vβ domains revealed by TCRβ chain crystal structures: implications for pre-TCR dimerization. Front Immunol 2:5CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUSA
  2. 2.Department of DermatologyHarvard Medical SchoolBostonUSA
  3. 3.Laboratory of ImmunobiologyDana-Farber Cancer InstituteBostonUSA
  4. 4.Department of Medical OncologyDana-Farber Cancer InstituteBostonUSA
  5. 5.Department of MedicineHarvard Medical SchoolBostonUSA
  6. 6.Department of Biomedical EngineeringTexas A&M UniversityCollege StationUSA
  7. 7.Department of Materials Science & EngineeringTexas A&M UniversityCollege StationUSA
  8. 8.School of Computational SciencesKorea Institute for Advanced StudySeoulRepublic of Korea
  9. 9.Department of PediatricsHarvard Medical SchoolBostonUSA
  10. 10.Department of Cancer BiologyDana-Farber Cancer InstituteBostonUSA
  11. 11.Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleUSA
  12. 12.Department of Molecular Physiology and BiophysicsVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations