Advertisement

Journal of Biomolecular NMR

, Volume 71, Issue 4, pp 203–211 | Cite as

On the use of Pichia pastoris for isotopic labeling of human GPCRs for NMR studies

  • Lindsay Clark
  • Igor Dikiy
  • Daniel M. Rosenbaum
  • Kevin H. Gardner
Article

Abstract

NMR studies of human integral membrane proteins provide unique opportunities to probe structure and dynamics at specific locations and on multiple timescales, often with significant implications for disease mechanism and drug development. Since membrane proteins such as G protein-coupled receptors (GPCRs) are highly dynamic and regulated by ligands or other perturbations, NMR methods are potentially well suited to answer basic functional questions (such as addressing the biophysical basis of ligand efficacy) as well as guiding applications (such as novel ligand design). However, such studies on eukaryotic membrane proteins have often been limited by the inability to incorporate optimal isotopic labels for NMR methods developed for large protein/lipid complexes, including methyl TROSY. We review the different expression systems for production of isotopically labeled membrane proteins and highlight the use of the yeast Pichia pastoris to achieve perdeuteration and 13C methyl probe incorporation within isoleucine sidechains. We further illustrate the use of this method for labeling of several biomedically significant GPCRs.

Keywords

Pichia pastoris Stable isotope labeling Deuteration Solution NMR GPCR Integral membrane proteins 

Notes

Acknowledgements

This project was supported by the National Science Foundation (Grant 1000136529 to L.D.C.), the American Heart Association (Grant 16PRE27200004 to L.D.C.), the Welch Foundation (I-1770 to D.M.R), a Packard Foundation Fellowship (to D.M.R.), the Mallinckrodt Foundation (to D.M.R), and the National Institutes of Health (F32 GM119311 to I.D., R01 GM113050 to D.M.R., and R01 GM106239 to K.H.G.). Reagents for NMR spectroscopy were generously provided by a research award from Cambridge Isotope Laboratories, Inc.

References

  1. Ahuja S, Hornak V, Yan ECY, Syrett N, Goncalves JA, Hirshfeld A, Ziliox M, Sakmar TP, Sheves M, Reeves PJ, Smith SO, Eilers M (2009) Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Nat Struct Mol Biol 16:168–175CrossRefGoogle Scholar
  2. Almén MS, Nordström KJ, Fredriksson R, Schiöth HB (2009) Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol 7:50CrossRefGoogle Scholar
  3. Aw R, Polizzi KM (2013) Can too many copies spoil the broth? Microb Cell Fact 12:128CrossRefGoogle Scholar
  4. Bokoch MP, Zou Y, Rasmussen SGF, Liu CW, Nygaard R, Rosenbaum DM, Fung JJ, Choi H-J, Thian FS, Kobilka TS, Puglisi JD, Weis WI, Pardo L, Prosser RS, Mueller L, Kobilka BK (2010) Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463:108–112ADSCrossRefGoogle Scholar
  5. Brüggert M, Rehm T, Shanker S, Georgescu J, Holak TA (2003) A novel medium for expression of proteins selectively labeled with 15N-amino acids in Spodoptera frugiperda (Sf9) insect cells. J Biomol NMR 25:335–348CrossRefGoogle Scholar
  6. Byrne B (2015) Pichia pastoris as an expression host for membrane protein structural biology. Curr Opin Struct Biol 32:9–17CrossRefGoogle Scholar
  7. Casiraghi M, Damian M, Lescop E, Point E, Moncoq K, Morellet N, Levy D, Marie J, Guittet E, Baneres JL, Catoire LJ (2016) Functional modulation of a G protein-coupled receptor conformational landscape in a lipid bilayer. J Am Chem Soc 138:11170–11175CrossRefGoogle Scholar
  8. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66CrossRefGoogle Scholar
  9. Chien CH, Helfinger LR, Bostock MJ, Solt A, Tan YL, Nietlispach D (2017) An adaptable phospholipid membrane mimetic system for solution NMR studies of membrane proteins. J Am Chem Soc 139:14829–14832CrossRefGoogle Scholar
  10. Clark L, Zahm JA, Ali R, Kukula M, Bian L, Patrie SM, Gardner KH, Rosen MK, Rosenbaum DM (2015) Methyl labeling and TROSY NMR spectroscopy of proteins expressed in the eukaryote Pichia pastoris. J Biomol NMR 62:239–245CrossRefGoogle Scholar
  11. Clark LD, Dikiy I, Chapman K, Rödström KE, Aramini J, LeVine MV, Khelashvili G, Rasmussen SG, Gardner KH, Rosenbaum DM (2017) Ligand modulation of sidechain dynamics in a wild-type human GPCR. Elife 6:e28505CrossRefGoogle Scholar
  12. Cos O, Ramon R, Montesinos JL, Valero F (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 5:17CrossRefGoogle Scholar
  13. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  14. Dutta A, Saxena K, Schwalbe H, Klein-Seetharaman J (2012) Isotope labeling in mammalian cells. Methods Mol Biol 831:55–69CrossRefGoogle Scholar
  15. Eddy MT, Didenko T, Stevens Raymond C, Wüthrich K (2016) β2-Adrenergic receptor conformational response to fusion protein in the third intracellular loop. Structure 24:2190–2197CrossRefGoogle Scholar
  16. Eddy MT, Lee MY, Gao ZG, White KL, Didenko T, Horst R, Audet M, Stanczak P, McClary KM, Han GW, Jacobson KA, Stevens RC, Wüthrich K (2018) Allosteric coupling of drug binding and intracellular signaling in the A2A adenosine receptor. Cell 172:68–80, e12CrossRefGoogle Scholar
  17. Egorova-Zachernyuk TA, Bosman GJCGM, DeGrip WJ (2010) Uniform stable-isotope labeling in mammalian cells: formulation of a cost-effective culture medium. Appl Microbiol Biotechnol 89:397–406CrossRefGoogle Scholar
  18. Emami S, Fan Y, Munro R, Ladizhansky V, Brown LS (2013) Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra. J Biomol NMR 55:147–155CrossRefGoogle Scholar
  19. Fan Y, Shi L, Ladizhansky V, Brown LS (2011) Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment. J Biomol NMR 49:151–161CrossRefGoogle Scholar
  20. Fan Y, Emami S, Munro R, Ladizhansky V, Brown LS (2015) Isotope labeling of eukaryotic membrane proteins in yeast for solid-state NMR. Methods Enzymol 565:193–212CrossRefGoogle Scholar
  21. Franke B, Opitz C, Isogai S, Grahl A, Delgado L, Gossert AD, Grzesiek S (2018) Production of isotope-labeled proteins in insect cells for NMR. J Biomol NMR 71:173–184CrossRefGoogle Scholar
  22. Gardner KH, Kay LE (1997) Production and incorporation of 15N, 13C, 2H (1H-d1 methyl) isoleucine into proteins for multidimensional NMR studies. J Am Chem Soc 119:7599–7600CrossRefGoogle Scholar
  23. Goncalves JA, South K, Ahuja S, Zaitseva E, Opefi CA, Eilers M, Vogel R, Reeves PJ, Smith SO (2010) Highly conserved tyrosine stabilizes the active state of rhodopsin. Proc Natl Acad Sci USA 107:19861–19866ADSCrossRefGoogle Scholar
  24. Gossert AD, Hinniger A, Gutmann S, Jahnke W, Strauss A, Fernández C (2011) A simple protocol for amino acid type selective isotope labeling in insect cells with improved yields and high reproducibility. J Biomol NMR 51:449–456CrossRefGoogle Scholar
  25. Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of Val, Leu, Ile (d1) methyl-protonated 15N, 13C, 2H labeled proteins. J Biomol NMR 13:369–374CrossRefGoogle Scholar
  26. Guo J, Zeng W, Chen Q, Lee C, Chen L, Yang Y, Cang C, Ren D, Jiang Y (2016) Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature 531:196–201ADSCrossRefGoogle Scholar
  27. Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321:1206–1210ADSCrossRefGoogle Scholar
  28. Hino T, Arakawa T, Iwanari H, Yurugi-Kobayashi T, Ikeda-Suno C, Nakada-Nakura Y, Kusano-Arai O, Weyand S, Shimamura T, Nomura N, Cameron AD, Kobayashi T, Hamakubo T, Iwata S, Murata T (2012) G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482:237–240ADSCrossRefGoogle Scholar
  29. Hou X, Pedi L, Diver MM, Long SB (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338:1308–1313ADSCrossRefGoogle Scholar
  30. Isogai S, Deupi X, Opitz C, Heydenreich FM, Tsai C-J, Brueckner F, Schertler GFX, Veprintsev DB, Grzesiek S (2016) Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor. Nature 530:237–241ADSCrossRefGoogle Scholar
  31. Jin MS, Oldham ML, Zhang Q, Chen J (2012) Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490:566–569ADSCrossRefGoogle Scholar
  32. Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol Biol 278:313–352Google Scholar
  33. Kamiya Y, Yamamoto S, Chiba Y, Jigami Y, Kato K (2011) Overexpression of a homogeneous oligosaccharide with 13C labeling by genetically engineered yeast strain. J Biomol NMR 50:397–401CrossRefGoogle Scholar
  34. Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR (2009) Recent advances in the application of solution NMR spectroscopy to multi-span integral membrane proteins. Prog Nucl Magn Reson Spectrosc 55:335–360CrossRefGoogle Scholar
  35. Kofuku Y, Ueda T, Okude J, Shiraishi Y, Kondo K, Maeda M, Tsujishita H, Shimada I (2012) Efficacy of the β2-adrenergic receptor is determined by conformational equilibrium in the transmembrane region. Nat Commun 3:1045–1049ADSCrossRefGoogle Scholar
  36. Kofuku Y, Ueda T, Okude J, Shiraishi Y, Kondo K, Mizumura T, Suzuki S, Shimada I (2014) Functional dynamics of deuterated β2-adrenergic receptor in lipid bilayers revealed by NMR spectroscopy. Angew Chem Int Ed 53:13376–13379CrossRefGoogle Scholar
  37. Kofuku Y, Yokomizo T, Imai S, Shiraishi Y, Natsume M, Itoh H, Inoue M, Nakata K, Igarashi S, Yamaguchi H, Mizukoshi T, Suzuki EI, Ueda T, Shimada I (2018) Deuteration and selective labeling of alanine methyl groups of β2-adrenergic receptor expressed in a baculovirus-insect cell expression system. J Biomol NMR 71:185–192CrossRefGoogle Scholar
  38. Laroche Y, Storme V, De Meutter J, Messens J, Lauwereys M (1994) High-level secretion and very efficient isotopic labeling of tick anticoagulant peptide (TAP) expressed in the methylotrophic yeast, Pichia pastoris. Biotechnology 12:1119–1124CrossRefGoogle Scholar
  39. Lee JY, Kinch LN, Borek DM, Wang J, Wang J, Urbatsch IL, Xie XS, Grishin NV, Cohen JC, Otwinowski Z, Hobbs HH, Rosenbaum DM (2016) Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature 533:561–564ADSCrossRefGoogle Scholar
  40. Liu JJ, Horst R, Katritch V, Stevens RC, Wuthrich K (2012) Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335:1106–1110ADSCrossRefGoogle Scholar
  41. Liu J, Liu C, Fan Y, Munro RA, Ladizhansky V, Brown LS, Wang S (2016) Sparse 13C labelling for solid-state NMR studies of P. pastoris expressed eukaryotic seven-transmembrane proteins. J Biomol NMR 65:7–13CrossRefGoogle Scholar
  42. Manglik A, Kim TH, Masureel M, Altenbach C, Yang Z, Hilger D, Lerch MT, Kobilka TS, Thian FS, Hubbell WL, Prosser RS, Kobilka BK (2015) Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161:1101–1111CrossRefGoogle Scholar
  43. Massotte D (2003) G protein-coupled receptor overexpression with the baculovirus-insect cell system: a tool for structural and functional studies. Biochim Biophys Acta 1610:77–89CrossRefGoogle Scholar
  44. Massou S, Puech V, Talmont F, Demange P, Lindley ND, Tropis M, Milon A (1999) Heterologous expression of a deuterated membrane-integrated receptor and partial deuteration in methylotrophic yeasts. J Biomol NMR 14:231–239CrossRefGoogle Scholar
  45. Minato Y, Suzuki S, Hara T, Kofuku Y, Kasuya G, Fujiwara Y, Igarashi S, Suzuki E-i, Nureki O, Hattori M, Ueda T, Shimada I (2016) Conductance of P2 × 4purinergic receptor is determined by conformational equilibrium in the transmembrane region. Proc Natl Acad Sci USA 113:4741–4746ADSCrossRefGoogle Scholar
  46. Miyazawa-Onami M, Takeuchi K, Takano T, Sugiki T, Shimada I, Takahashi H (2013) Perdeuteration and methyl-selective 1H, 13C-labeling by using a Kluyveromyces lactis expression system. J Biomol NMR 57:297–304CrossRefGoogle Scholar
  47. Morgan WD, Kragt A, Feeney J (2000) Expression of deuterium-isotope-labelled protein in the yeast Pichia pastoris for NMR studies. J Biomol NMR 17:337–347CrossRefGoogle Scholar
  48. Murphy J, Desaive C, Giaretti W, Kendall F, Nicolini C (1977) Experimental results on mammalian cells growing in vitro in deuterated medium for neutron-scattering studies. J Cell Sci 25:87–94Google Scholar
  49. Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP, Thian FS, Kobilka TS, Shaw DE, Mueller L, Prosser RS, Kobilka BK (2013) The dynamic process of β2-adrenergic receptor activation. Cell 152:532–542CrossRefGoogle Scholar
  50. Okude J, Ueda T, Kofuku Y, Sato M, Nobuyama N, Kondo K, Shiraishi Y, Mizumura T, Onishi K, Natsume M, Maeda M, Tsujishita H, Kuranaga T, Inoue M, Shimada I (2015) Identification of a conformational equilibrium that determines the efficacy and functional selectivity of the µ-opioid receptor. Angew Chem 127:15997–16002CrossRefGoogle Scholar
  51. Oldham ML, Hite RK, Steffen AM, Damko E, Li Z, Walz T, Chen J (2016) A mechanism of viral immune evasion revealed by cryo-EM analysis of the TAP transporter. Nature 529:537–540ADSCrossRefGoogle Scholar
  52. Ollerenshaw JE, Tugarinov V, Kay LE (2003) Methyl TROSY: explanation and experimental verification. Magn Reson Chem 41:843–852CrossRefGoogle Scholar
  53. Opitz C, Isogai S, Grzesiek S (2015) An economic approach to efficient isotope labeling in insect cells using homemade 15N-, 13C- and 2H-labeled yeast extracts. J Biomol NMR 62:373–385CrossRefGoogle Scholar
  54. Pándy-Szekeres G, Munk C, Tsonkov TM, Mordalski S, Harpsøe K, Hauser AS, Bojarski AJ, Gloriam DE (2018) GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res 46:D440–D446CrossRefGoogle Scholar
  55. Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, De Angelis AA, Marassi FM, Opella SJ (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491:779–783ADSCrossRefGoogle Scholar
  56. Religa TL, Sprangers R, Kay LE (2010) Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR. Science 328:98–102ADSCrossRefGoogle Scholar
  57. Rodriguez E, Krishna NR (2001) An economical method for (15)N/(13)C isotopic labeling of proteins expressed in Pichia pastoris. J Biochem 130:19–22CrossRefGoogle Scholar
  58. Shao Z, Yin J, Chapman K, Grzemska M, Clark L, Wang J, Rosenbaum DM (2016) High-resolution crystal structure of the human CB1 cannabinoid receptor. Nature 540:602–606ADSCrossRefGoogle Scholar
  59. Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW, Kobayashi T, Stevens RC, Iwata S (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475:65–70CrossRefGoogle Scholar
  60. Solt AS, Bostock MJ, Shrestha B, Kumar P, Warne T, Tate CG, Nietlispach D (2017) Insight into partial agonism by observing multiple equilibria for ligand-bound and Gs-mimetic nanobody-bound β1-adrenergic receptor. Nat Commun 8:1795ADSCrossRefGoogle Scholar
  61. Sounier R, Mas C, Steyaert J, Laeremans T, Manglik A, Huang W, Kobilka BK, Déméné H, Granier S (2015) Propagation of conformational changes during µ-opioid receptor activation. Nature 524:375–378ADSCrossRefGoogle Scholar
  62. Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–622CrossRefGoogle Scholar
  63. Staus DP, Strachan RT, Manglik A, Pani B, Kahsai AW, Kim TH, Wingler LM, Ahn S, Chatterjee A, Masoudi A, Kruse AC, Pardon E, Steyaert J, Weis WI, Prosser RS, Kobilka BK, Costa T, Lefkowitz RJ (2016) Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature 535:448–452ADSCrossRefGoogle Scholar
  64. Strauss A, Bitsch F, Cutting B, Fendrich G, Graff P, Liebetanz J, Zurini M, Jahnke W (2003) Amino-acid-type selective isotope labeling of proteins expressed in Baculovirus-infected insect cells useful for NMR studies. J Biomol NMR 26:367–372CrossRefGoogle Scholar
  65. Strauss A, Bitsch F, Fendrich G, Graff P, Knecht R, Meyhack B, Jahnke W (2005) Efficient uniform isotope labeling of Abl kinase expressed in Baculovirus-infected insect cells. J Biomol NMR 31:343–349CrossRefGoogle Scholar
  66. Sugiki T, Ichikawa O, Miyazawa-Onami M, Shimada I, Takahashi H (2012) Isotopic labeling of heterologous proteins in the yeast Pichia pastoris and Kluyveromyces lactis. Methods Mol Biol 831:19–36CrossRefGoogle Scholar
  67. Suzuki R, Sakakura M, Mori M, Fujii M, Akashi S, Takahashi H (2018) Methyl-selective isotope labeling using alpha-ketoisovalerate for the yeast Pichia pastoris recombinant protein expression system. J Biomol NMR.  https://doi.org/10.1007/s10858-018-0192-3 Google Scholar
  68. Werner K, Richter C, Klein-Seetharaman J, Schwalbe H (2007) Isotope labeling of mammalian GPCRs in HEK293 cells and characterization of the C-terminus of bovine rhodopsin by high resolution liquid NMR spectroscopy. J Biomol NMR 40:49–53CrossRefGoogle Scholar
  69. Whittaker MM, Whittaker JW (2005) Construction and characterization of Pichia pastoris strains for labeling aromatic amino acids in recombinant proteins. Protein Expr Purif 41:266–274CrossRefGoogle Scholar
  70. Whorton MR, MacKinnon R (2011) Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 147:199–208CrossRefGoogle Scholar
  71. Wood MJ, Komives EA (1999) Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation. J Biomol NMR 13:149–159CrossRefGoogle Scholar
  72. Ye L, Van Eps N, Zimmer M, Ernst OP, Prosser RS (2016) Activation of the A2A adenosine G-protein-coupled receptor by conformational selection. Nature 533:265–268ADSCrossRefGoogle Scholar
  73. Yin J, Mobarec JC, Kolb P, Rosenbaum DM (2015) Crystal structure of the human OX2 orexin receptor bound to the insomnia drug suvorexant. Nature 519:247–250ADSCrossRefGoogle Scholar
  74. Yurugi-Kobayashi T, Asada H, Shiroishi M, Shimamura T, Funamoto S, Katsuta N, Ito K, Sugawara T, Tokuda N, Tsujimoto H, Murata T, Nomura N, Haga K, Haga T, Iwata S, Kobayashi T (2009) Comparison of functional non-glycosylated GPCRs expression in Pichia pastoris. Biochem Biophys Res Commun 380:271–276CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of BiophysicsThe University of Texas Southwestern Medical CenterDallasUSA
  2. 2.Molecular Biophysics Graduate ProgramThe University of Texas Southwestern Medical CenterDallasUSA
  3. 3.Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkUSA
  4. 4.Department of Chemistry and BiochemistryCity College of New YorkNew YorkUSA
  5. 5.Biochemistry, Chemistry and Biology Ph.D. Programs, Graduate CenterCity University of New YorkNew YorkUSA

Personalised recommendations