Journal of Biomolecular NMR

, Volume 72, Issue 1–2, pp 29–38 | Cite as

Conformationally locked lanthanide chelating tags for convenient pseudocontact shift protein nuclear magnetic resonance spectroscopy

  • Daniel Joss
  • Roché M. Walliser
  • Kaspar Zimmermann
  • Daniel HäussingerEmail author


Pseudocontact shifts (PCS) generated by lanthanide chelating tags yield valuable restraints for investigating protein structures, dynamics and interactions in solution. In this work, dysprosium-, thulium- and terbium-complexes of eight-fold methylated 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid tags [DOTA-M8-(4R4S)-SSPy] are presented that induce large pseudocontact shifts up to 5.5 ppm and adopt exclusively the square antiprismatic conformation. This is in contrast to our earlier findings on complexes of the stereoisomeric DOTA-M8-(8S)-SSPy, where significant amounts of the twisted square antiprismatic conformer for the Dy tag were observed. The Dy-, Tm-, Tb- and Lu-complexes of DOTA-M8-(4R4S)-SSPy were conjugated to ubiquitin S57C and selectively 15N leucine labeled human carbonic anhydrase II S50C, resulting in only one set of signals. Furthermore, we investigated the conformation of the thulium- and dysprosium-complexes in vacuo and with implicit water solvent using density functional theory calculations. The calculated energy differences between the two different conformations (7.0–50.5 kJ/mol) and experimental evidence from the corresponding ytterbium- and yttrium-complexes clearly suggest a SAP [Λ(δδδδ)] geometry for the complexes presented in this study. The lanthanide chelating tag studied in this work offer insights into the solution structure of proteins by inducing strong pseudocontact shifts, show different tensor properties compared to its predecessor, enables a convenient assignment procedure, is accessed by a more economic synthesis than its predecessor and constitutes a highly promising starting point for further developments of lanthanide chelating tags.


Nuclear magnetic resonance Pseudocontact shift Lanthanide chelating tag Paramagnetic Density functional theory Protein 



The Chemistry Department of the University of Basel and the Swiss National Science Foundation Grant 200021_130263 are acknowledged for financial support. Calculations were performed at sciCORE ( scientific computing core facility at University of Basel. Biological structures were generated using the open source software PyMOL ( C.E. Housecroft, E.C. Constable, T. Müntener and R. Vogel are acknowledged for helpful discussions. R.A. Byrd is gratefully acknowledged for a gift of M4-cyclen.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10858_2018_203_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (PDF 1254 KB)


  1. Avvaru BS, Kim CU, Sippel KH, Gruner SM, Agbandje-McKenna M, Silverman DN, McKenna R (2010) A short, strong hydrogen bond in the active site of human carbonic anhydrase II. Biochemistry 49:249–251CrossRefGoogle Scholar
  2. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100ADSCrossRefGoogle Scholar
  3. Benetollo F, Bombieri G, Calabi L, Aime S, Botta M (2003) Structural variations across the lanthanide series of macrocyclic DOTA complexes: insights into the design of contrast agents for magnetic resonance imaging. Inorg Chem 42:148–157CrossRefGoogle Scholar
  4. Blahut J, Hermann P, Tosner Z, Platas-Iglesias C (2017) A combined NMR and DFT study of conformational dynamics in lanthanide complexes of macrocyclic DOTA-like ligands. PCCP 19:26662–26671ADSCrossRefGoogle Scholar
  5. Bleaney B (1972) Nuclear magnetic resonance shifts in solution due to lanthanide ions. J Magn Reson 8:91–100ADSGoogle Scholar
  6. Brewer KD, Bacaj T, Cavalli A, Camilloni C, Swarbrick JD, Liu J, Zhou A, Zhou P, Barlow N, Xu J, Seven AB, Prinslow EA, Voleti R, Häussinger D, Bonvin AM, Tomchick DR, Vendruscolo M, Graham B, Südhof TC, Rizo J (2015) Dynamic binding mode of a Synaptotagmin-1-SNARE complex in solution. Nat Struct Mol Biol 22:555–564CrossRefGoogle Scholar
  7. Chen JL, Zhao Y, Gong YJ, Pan B-B, Wang X, Su XC (2018) Stable and rigid DTPA-like paramagnetic tags suitable for in vitro and in situ protein NMR analysis. J Biomol NMR 70:77–92CrossRefGoogle Scholar
  8. Cosentino U, Villa A, Pitea D, Moro G, Barone V, Maiocchi A (2002) Conformational characterization of lanthanide(III)-DOTA complexes by ab initio investigation in vacuo and in aqueous solution. J Am Chem Soc 124:4901–4909CrossRefGoogle Scholar
  9. Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. PCCP 11:10757–10816ADSCrossRefGoogle Scholar
  10. Dolg M, Stoll H, Savin A, Preuss H (1989) Energy-adjusted pseudopotentials for the rare earth elements. Theor Chim Acta 75:173–194CrossRefGoogle Scholar
  11. Dolg M, Stoll H, Preuss H (1993) A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds. Theor Chim Acta 85:441–450CrossRefGoogle Scholar
  12. Funk AM, Finney K, Harvey P, Kenwright AM, Neil ER, Rogers NJ, Kanthi Senanayake P, Parker D (2015) Critical analysis of the limitations of Bleaney’s theory of magnetic anisotropy in paramagnetic lanthanide coordination complexes. Chem Sci 6:1655–1662CrossRefGoogle Scholar
  13. Gaponenko V, Altieri AS, Li J, Byrd RA (2002) Breaking symmetry in the structure determination of (large) symmetric protein dimers. J Biomol NMR 24:143–148CrossRefGoogle Scholar
  14. Gempf KL, Butler SJ, Funk AM, Parker D (2013) Direct and selective tagging of cysteine residues in peptides and proteins with 4-nitropyridyl lanthanide complexes. Chem Commun 49:9104–9106CrossRefGoogle Scholar
  15. Graham B, Loh CT, Swarbrick JD, Ung P, Shin J, Yagi H, Jia X, Chhabra S, Barlow N, Pintacuda G, Huber T, Otting G (2011) DOTA-amide lanthanide tag for reliable generation of pseudocontact shifts in protein NMR spectra. Bioconj Chem 22:2118–2125CrossRefGoogle Scholar
  16. Grimme S (2005) Accurate calculation of the heats of formation for large main group compounds with spin-component scaled MP2 methods. J Phys Chem A 109:3067–3077CrossRefGoogle Scholar
  17. Grimmel S, Schoendorff G, Wilson AK (2016) Gauging the performance of density functionals for lanthanide-containing molecules. J Chem Theory Comput 12:1259–1266CrossRefGoogle Scholar
  18. Häussinger D, Huang JR, Grzesiek S (2009) DOTA-M8: an extremely rigid, high-affinity lanthanide chelating tag for PCS NMR spectroscopy. J Am Chem Soc 131:14761–14767CrossRefGoogle Scholar
  19. Helm L (2006) Relaxivity in paramagnetic systems: theory and mechanisms. Prog Nucl Magn Reson Spectrosc 49:45–64CrossRefGoogle Scholar
  20. Hikone Y, Hirai G, Mishima M, Inomata K, Ikeya T, Arai S, Shirakawa M, Sodeoka M, Ito Y (2016) A new carbamidemethyl-linked lanthanoid chelating tag for PCS NMR spectroscopy of proteins in living HeLa cells. J Biomol NMR 66:99–110CrossRefGoogle Scholar
  21. Ikegami T, Verdier L, Sakhaii P, Grimme S, Pescatore B, Saxena K, Fiebig KM, Griesinger C (2004) Novel techniques for weak alignment of proteins in solution using chemical tags coordinating lanthanide ions. J Biomol NMR 29:339–349CrossRefGoogle Scholar
  22. Keizers PHJ, Saragliadis A, Hiruma Y, Overhand M, Ubbink M (2008) Design, synthesis, and evaluation of a lanthanide chelating protein probe: CLaNP-5 yields predictable paramagnetic effects independent of environment. J Am Chem Soc 130:14802–14812CrossRefGoogle Scholar
  23. Liu WM, Overhand M, Ubbink M (2014) The application of paramagnetic lanthanoid ions in NMR spectroscopy on proteins. Coord Chem Rev 273–274:2–12CrossRefGoogle Scholar
  24. Loh CT, Ozawa K, Tuck KL, Barlow N, Huber T, Otting G, Graham B (2013) Lanthanide tags for site-specific ligation to an unnatural amino acid and generation of pseudocontact shifts in proteins. Bioconj Chem 24:260–268CrossRefGoogle Scholar
  25. Mironov VS, Galyametdinov YG, Ceulemans A, Görller-Walrand C, Binnemans K (2001) Influence of crystal-field perturbations on the room-temperature magnetic anisotropy of lanthanide complexes. Chem Phys Lett 345:132–140ADSCrossRefGoogle Scholar
  26. Müntener T, Häussinger D, Selenko P, Theillet FX (2016) In-cell protein structures from 2D NMR experiments. J Phys Chem Lett 7:2821–2825CrossRefGoogle Scholar
  27. Natrajan LS, Khoabane NM, Dadds BL, Muryn CA, Pritchard RG, Heath SL, Kenwright AM, Kuprov I, Faulkner S (2010) Probing the structure, conformation, and stereochemical exchange in a family of lanthanide complexes derived from tetrapyridyl-appended cyclen. Inorg Chem 49:7700–7709CrossRefGoogle Scholar
  28. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78CrossRefGoogle Scholar
  29. Nitsche C, Otting G (2017) Pseudocontact shifts in biomolecular NMR using paramagnetic metal tags. Prog Nucl Magn Reson Spectrosc 98–99:20–49CrossRefGoogle Scholar
  30. Opina ACL, Strickland M, Lee YS, Tjandra N, Byrd RA, Swenson RE, Vasalatiy O (2016) Analysis of the isomer ratios of polymethylated-DOTA complexes and the implications on protein structural studies. Dalton Trans 45:4673–4687CrossRefGoogle Scholar
  31. Otting G (2010) Protein NMR using paramagnetic ions. Annu Rev Biophys 39:387–405CrossRefGoogle Scholar
  32. Pan BB, Yang F, Ye Y, Wu Q, Li C, Huber T, Su XC (2016) 3D structure determination of a protein in living cells using paramagnetic NMR spectroscopy. Chem Commun 52:10237–10240CrossRefGoogle Scholar
  33. Parker D, Dickins RS, Puschmann H, Crossland C, Howard JAK (2002) Being excited by lanthanide coordination complexes: aqua species, chirality, excited-state chemistry, and exchange dynamics. Chem Rev 102:1977–2010CrossRefGoogle Scholar
  34. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824ADSCrossRefGoogle Scholar
  35. Peters F, Maestre-Martinez M, Leonov A, Kovacic L, Becker S, Boelens R, Griesinger C (2011) Cys-Ph-TAHA: a lanthanide binding tag for RDC and PCS enhanced protein NMR. J Biomol NMR 51:329–337CrossRefGoogle Scholar
  36. Pintacuda G, Park AY, Keniry MA, Dixon NE, Otting G (2006) Lanthanide labeling offers fast NMR approach to 3D structure determinations of protein-protein complexes. J Am Chem Soc 128:3696–3702CrossRefGoogle Scholar
  37. Ramage R, Green J, Muir TW, Ogunjobi OM, Love S, Shaw K (1994) Synthetic, structural and biological studies of the ubiquitin system: the total chemical synthesis of ubiquitin. Biochem J 299:151–158CrossRefGoogle Scholar
  38. Ranganathan RS, Pillai RK, Raju N, Fan H, Nguyen H, Tweedle MF, Desreux JF, Jacques V (2002a) Polymethylated DOTA ligands. 1. Synthesis of rigidified ligands and studies on the effects of alkyl substitution on acid-base properties and conformational mobility. Inorg Chem 41:6846–6855CrossRefGoogle Scholar
  39. Ranganathan RS, Raju N, Fan H, Zhang X, Tweedle MF, Desreux JF, Jacques V (2002b) Polymethylated DOTA ligands. 2. Synthesis of rigidified lanthanide chelates and studies on the effect of alkyl substitution on conformational mobility and relaxivity. Inorg Chem 41:6856–6866CrossRefGoogle Scholar
  40. Redfern PC, Zapol P, Curtiss LA, Raghavachari K (2000) Assessment of Gaussian-3 and density functional theories for enthalpies of formation of C1-C16 alkanes. J Phys Chem A 104:5850–5854CrossRefGoogle Scholar
  41. Regueiro-Figueroa M, Bensenane B, Ruscsák E, Esteban-Gómez D, Charbonnière LJ, Tircsó G, Tóth I, Blas AD, Rodríguez-Blas T, Platas-Iglesias C (2011) Lanthanide DOTA-like complexes containing a picolinate pendant: structural entry for the design of LnIII-based luminescent probes. Inorg Chem 50:4125–4141CrossRefGoogle Scholar
  42. Sass J, Cordier F, Hoffmann A, Rogowski M, Cousin A, Omichinski JG, Löwen H, Grzesiek S (1999) Purple membrane induced alignment of biological macromolecules in the magnetic field. J Am Chem Soc 121:2047–2055CrossRefGoogle Scholar
  43. Schmitz C, Stanton-Cook MJ, Su X-C, Otting G, Huber T (2008) Numbat: an interactive software tool for fitting ∆χ-tensors to molecular coordinates using pseudocontact shifts. J Biomol NMR 41:179–189CrossRefGoogle Scholar
  44. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751–767CrossRefGoogle Scholar
  45. Shishmarev D, Otting G (2013) How reliable are pseudocontact shifts induced in proteins and ligands by mobile paramagnetic metal tags? A modelling study. J Biomol NMR 56:203–216CrossRefGoogle Scholar
  46. Sousa SF, Fernandes PA, Ramos MJ (2007) General performance of density functionals. J Phys Chem A 111:10439–10452CrossRefGoogle Scholar
  47. Strickland M, Schwieters CD, Göbl C, Opina ACL, Strub MP, Swenson RE, Vasalatiy O, Tjandra N (2016) Characterizing the magnetic susceptibility tensor of lanthanide-containing polymethylated-DOTA complexes. J Biomol NMR 66:125–139CrossRefGoogle Scholar
  48. Su XC, Man B, Beeren S, Liang H, Simonsen S, Schmitz C, Huber T, Messerle BA, Otting G (2008) A dipicolinic acid tag for rigid lanthanide tagging of proteins and paramagnetic NMR spectroscopy. J Am Chem Soc 130:10486–10487CrossRefGoogle Scholar
  49. Su XC, Liang H, Loscha KV, Otting G (2009) [Ln(DPA)3]3– is a convenient paramagnetic shift reagent for protein NMR studies. J Am Chem Soc 131:10352–10353CrossRefGoogle Scholar
  50. Suturina EA, Mason K, Geraldes C, Kuprov I, Parker D (2017) Beyond Bleaney’s theory: experimental and theoretical analysis of periodic trends in lanthanide-induced chemical shift. Angew Chem Int Ed 56:12215–12218CrossRefGoogle Scholar
  51. Takano Y, Houk KN (2005) Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J Chem Theory Comput 1:70–77CrossRefGoogle Scholar
  52. Varghese S, Halling PJ, Häussinger D, Wimperis S (2016) High-resolution structural characterization of a heterogeneous biocatalyst using solid-state NMR. J Phys Chem C 120:28717–28726CrossRefGoogle Scholar
  53. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins Struct, Funct, Bioinform 59:687–696CrossRefGoogle Scholar
  54. Wöhnert J, Franz KJ, Nitz M, Imperiali B, Schwalbe H (2003) Protein alignment by a coexpressed lanthanide-binding tag for the measurement of residual dipolar couplings. J Am Chem Soc 125:13338–13339CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of BaselBaselSwitzerland

Personalised recommendations