Journal of Biomolecular NMR

, Volume 71, Issue 4, pp 213–223 | Cite as

Methyl-selective isotope labeling using α-ketoisovalerate for the yeast Pichia pastoris recombinant protein expression system

  • Rika Suzuki
  • Masayoshi Sakakura
  • Masaki Mori
  • Moe Fujii
  • Satoko Akashi
  • Hideo Takahashi


Methyl-detected NMR spectroscopy is a useful tool for investigating the structures and interactions of large macromolecules such as membrane proteins. The procedures for preparation of methyl-specific isotopically-labeled proteins were established for the Escherichia coli (E. coli) expression system, but typically it is not feasible to express eukaryotic proteins using E. coli. The Pichia pastoris (P. pastoris) expression system is the most common yeast expression system, and is known to be superior to the E. coli system for the expression of mammalian proteins, including secretory and membrane proteins. However, this system has not yet been optimized for methyl-specific isotope labeling, especially for Val/Leu-methyl specific isotope incorporation. To overcome this difficulty, we explored various culture conditions for the yeast cells to efficiently uptake Val/Leu precursors. Among the searched conditions, we found that the cultivation pH has a critical effect on Val/Leu precursor uptake. At an acidic cultivation pH, the uptake of the Val/Leu precursor was increased, and methyl groups of Val and Leu in the synthesized recombinant protein yielded intense 1H–13C correlation signals. Based on these results, we present optimized protocols for the Val/Leu-methyl-selective 13C incorporation by the P. pastoris expression system.


Pichia pastoris Stable isotope labeling Methyl-selective isotope labeling Eukaryotic expression system 



This work was supported by Japan Society for the Promotion of Science, KAKENHI [Grant Nos. JP15H04340 (HT), 24790046 (MS), and 26460038 (MS)], and by research grants from Yokohama City University (MS and HT). The authors are grateful to Prof. Tadashi Ueda (Kyushu University) for his precious advice for the protein expression using P. pastoris.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Supplementary material

10858_2018_192_MOESM1_ESM.pdf (216 kb)
Supplementary material 1 (PDF 215 KB)


  1. André N, Cherouati N, Prual C, Steffan T, Zeder-Lutz G, Magnin T, Pattus F, Michel H, Wagner R, Reinhart C (2006) Enhancing functional production of G protein-coupled receptors in Pichia pastoris to levels required for structural studies via a single expression screen. Protein Sci 15:1115–1126CrossRefGoogle Scholar
  2. Ayala I, Sounier R, Usé N, Gans P, Boisbouvier J (2009) An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein. J Biomol NMR 43:111–119CrossRefGoogle Scholar
  3. Bai XC, McMullan G, Scheres SH (2015) How cryo-EM is revolutionizing structural biology. Trends Biochem Sci 40:49–57CrossRefGoogle Scholar
  4. Bardwell JC (1994) Building bridges: disulphide bond formation in the cell. Mol Microbiol 14:199–205CrossRefGoogle Scholar
  5. Bordo D, Argos P (1991) Suggestions for “safe” residue substitutions in site-directed mutagenesis. J Mol Biol 217:721–729CrossRefGoogle Scholar
  6. Byme B (2015) Pichia pastoris as an expression host for membrane protein structural biology. Curr Opin Struct Biol 32:9–17CrossRefGoogle Scholar
  7. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66CrossRefGoogle Scholar
  8. Chen CY, Cheng CH, Chen YC, Lee JC, Chou SH, Huang W, Chuang WJ (2006) Preparation of amino-acid-type selective isotope labeling of protein expressed in Pichia pastoris. Proteins 62:279–287CrossRefGoogle Scholar
  9. Cheng Y (2015) Single-particle cryo-EM at crystallographic resolution. Cell 161:450–457CrossRefGoogle Scholar
  10. Chiruvolu V, Eskridge K, Cregg J, Meagher M (1998) Effects of glycerol concentration and pH on growth of recombinant Pichia pastoris yeast. Appl Biochem Biotechnol 75:163–173CrossRefGoogle Scholar
  11. Clark L, Zahm JA, Ali R, Kukula M, Bian L, Patrie SM, Gardner KH, Rosen MK, Rosenbaum DM (2015) Methyl labeling and TROSY NMR spectroscopy of proteins expressed in the eukaryote Pichia pastoris. J Biomol NMR 62:239–245CrossRefGoogle Scholar
  12. Clark LD, Dikiy I, Chapman K, Rödström KE, Aramini J, LeVine MV, Khelashvili G, Rasmussen SG, Gardner KH, Rosenbaum DM. Ligand modulation of sidechain dynamics in a wild-type human GPCR. Elife 6:e28505 (2017)CrossRefGoogle Scholar
  13. Denton H, Smith M, Husi H, Uhrin D, Barlow PN, Batt CA, Sawyer L (1998) Isotopically labeled bovine β-lactoglobulin for NMR studies expressed in Pichia pastoris. Protein Expr Purif 14:97–103CrossRefGoogle Scholar
  14. Emami S, Fan Y, Munro R, Ladizhansky V, Brown LS (2013) Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra. J Biomol NMR 55:147–155CrossRefGoogle Scholar
  15. Fan Y, Shi L, Ladizhansky V, Brown LS (2011) Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment. J Biomol NMR 49:151–161CrossRefGoogle Scholar
  16. Fischer M, Kloiber K, Häusler J, Ledolter K, Konrat R, Schmid W (2007) Synthesis of a 13C-methyl-group-labeled methionine precursor as a useful tool for simplifying protein structural analysis by NMR spectroscopy. Chembiochem 8:610–612CrossRefGoogle Scholar
  17. Förster J, Halbfeld C, Zimmermann M, Blank LM (2014) A blueprint of the amino acid biosynthesis network of hemiascomycetes. FEMS Yeast Res 14:1090–1100Google Scholar
  18. Gans P, Hamelin O, Sounier R, Ayala I, Durá MA, Amero CD, Noirclerc-Savoye M, Franzetti B, Plevin MJ, Boisbouvier J (2010) Stereospecific isotopic labeling of methyl groups for NMR spectroscopic studies of high-molecular-weight proteins. Angew Chem Int Ed 49:1958–1962CrossRefGoogle Scholar
  19. Gelis I, Bonvin AM, Keramisanou D, Koukaki M, Gouridis G, Karamanou S, Economou A, Kalodimos CG (2007) Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131:756–769CrossRefGoogle Scholar
  20. Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of Val, Leu, Ile(δ1)methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR 13:369–374CrossRefGoogle Scholar
  21. Hammarberg T, Hamberg M, Wetterholm A, Hansson H, Samuelsson B, Haeggström JZ (2009) Mutation of a critical arginine in microsomal prostaglandin E synthase-1 shifts the isomerase activity to a reductase activity that converts Prostaglandin H2 into Prostaglandin F. J Biol Chem 284:301–305CrossRefGoogle Scholar
  22. Imai T, Ohno T (1995) The relationship between viability and intracellular pH in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 61:3604–3608Google Scholar
  23. Isaacson RL, Simpson PJ, Liu M, Cota E, Zhang X, Freemont P, Mattews S (2007) A new labeling method for methyl transverse relaxation-optimized spectroscopy NMR spectra of alanine residues. J Am Chem Soc 129:15428–15429CrossRefGoogle Scholar
  24. Isidro IA, Portela RM, Clemente JJ, Cunha AE, Oliveira R (2016) Hybrid metabolic flux analysis and recombinant protein prediction in Pichia pastoris X-33 cultures expressing a single-chain antibody fragment. Bioprocess Biosyst Eng 39:1351–1363CrossRefGoogle Scholar
  25. Jamalzadeh E, Verheijen PJ, Heijnen JJ, van Gulik WM (2012) pH-dependent uptake of fumaric acid in Saccharomyces cerevisiae under anaerobic conditions. Appl Environ Microbiol 78:705–716CrossRefGoogle Scholar
  26. Katz JJ, Crespi HL (1966) Deuterated organisms: cultivation and uses. Science 151:1187–1194ADSCrossRefGoogle Scholar
  27. Kay LE (2011) Solution NMR spectroscopy of supra-molecular systems, why bother? A methyl-TROSY view. J Magn Reson 210:159–170ADSCrossRefGoogle Scholar
  28. Kerfah R, Plevin MJ, Sounier R, Gans P, Boisbouvier J (2015) Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins. Curr Opin Struct Biol 32:113–122CrossRefGoogle Scholar
  29. Kim TR, Goto Y, Hirota N, Kuwata K, Denton H, Wu SY, Sawyer L, Batt CA (1997) High-level expression of bovine β-lactoglobulin in Pichia pastoris and characterization of its physical properties. Protein Eng 10:1339–1345CrossRefGoogle Scholar
  30. Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Ohi H, Tomomitsu K, Ohmura T (2000) High-level expression of recombinant human serum albumin from the methylotrophic yeast Pichia pastoris with minimal protease production and activation. J Biosci Bioeng 89:55–61CrossRefGoogle Scholar
  31. Kofuku Y, Ueda T, Okude J, Shiraishi Y, Kondo K, Mizumura T, Suzuki S, Shimada I (2014) Functional dynamics of deuterated β2-adrenergic receptor in lipid bilayers revealed by NMR spectroscopy. Angew Chem Int Ed 53:13376–13379CrossRefGoogle Scholar
  32. Laroche Y, Strome V, De Meutter J, Messens J, Lauwereys M (1994) High-level secretion and very efficient isotopic labeling of tick anticoagulant peptide (TAP) expressed in the methylotrophic yeast, Pichia pastoris. Biotechnology 12:1119–1124CrossRefGoogle Scholar
  33. Leuking A, Holz C, Gotthold C, Lehrach H, Cahill (2000) D. A system for dual protein expression in Pichia pastoris and Escherichia coli. Protein Expr Purif 20:372–378CrossRefGoogle Scholar
  34. Li P, Anumanthan A, Gao XG, Ilangovan K, Suzara VV, Düzgüneş N, Renugopalakrishnan V (2007) Expression of recombinant proteins in Pichia pastoris. Appl Biochem Biotechnol 142:105–124CrossRefGoogle Scholar
  35. Liu Y, Engelman DM, Gerstein M (2002) Genomic analysis of membrane protein families: abundance and conserved motifs. Genome Biol 3:research0054Google Scholar
  36. Liu J, Liu C, Fan Y, Munro RA, Ladizhansky V, Brown LS, Wang S (2016) Sparse 13C labelling for solid-state NMR studies of P. pastoris expressed eukaryotic seven-transmembrane proteins. J Biomol NMR 65:7–13CrossRefGoogle Scholar
  37. Loch JI, Bonarek P, Tworzydło M, Polit A, Hawro B, Łach A, Ludwin E, Lewiński K (2016) Engineered β-lactoglobulin produced in E. coli: purification, biophysical and structural characterisation. Mol Biotechnol 58:605–618CrossRefGoogle Scholar
  38. Lopalco A, Douglas J, Denora N, Stella VJ (2016) Determination of pKa and hydration constants for a series of α-keto-carboxylic acids using nuclear magnetic resonance spectrometry. J Pharm Sci 105:664–672CrossRefGoogle Scholar
  39. Lundstrom K, Wagner R, Reinhart C, Desmyter A, Cherouati N, Magnin T, Zeder-Lutz G, Courtot M, Prual C, André N, Hassaine G, Michel H, Cambillau C, Pattus F (2006) Structural genomics on membrane proteins: comparison of more than 100 GPCRs in 3 expression systems. J Struct Funct Genomics 7:77–91CrossRefGoogle Scholar
  40. Massou S, Puech V, Talmont F, Demange P, Lindley ND, Tropis M (1999) & Milon. A. Heterologous expression of a deuterated membrane-integrated receptor and partial deuteration in methylotrophic yeasts. J Biomol NMR 14:231–239CrossRefGoogle Scholar
  41. Mattanovich D, Branduardi P, Dato L, Gasser B, Sauer M, Porro D (2012) Recombinant protein production in yeasts. Methods Mol Biol 824:329–358CrossRefGoogle Scholar
  42. Miyazawa-Onami M, Takeuchi K, Takano T, Sugiki T, Shimada I, Takahashi H (2013) Perdeuteration and methyl-selective 1H, 13C-labeling by using a Kluyveromyces lactis expression system. J Biomol NMR 57:297–304CrossRefGoogle Scholar
  43. Monsalve RI, Lu G, King TP (1999) Expressions of recombinant venom allergen, antigen 5 of yellowjacket (Vespula vulgaris) and paper wasp (Polistes annularis), in bacteria or yeast. Protein Expr Purif 16:410–416CrossRefGoogle Scholar
  44. Morgan WD, Kragt A, Feeney J (2000) Expression of deuterium-isotope-labelled protein in the yeast Pichia pastoris for NMR studies. J Biomol NMR 17:337–347CrossRefGoogle Scholar
  45. Ollerenshaw JE, Tugarinov V, Kay LE (2003) Methyl TROSY: explanation and experimental verification. Magn Reson Chem 41:843–852CrossRefGoogle Scholar
  46. Ponniah K, Loo TS, Edwards PJB, Pascal SM, Jameson GB, Norris GE (2010) The production of soluble and correctly folded recombinant bovine beta-lactoglobulin variants A and B in Escherichia coli for NMR studies. Protein Expr Purif 70:283–289CrossRefGoogle Scholar
  47. Reinhart C, Krettler C (2006) Structural genomics on membrane proteins, chapter 8. CRC Press, Boca RatonGoogle Scholar
  48. Rosenfeld SA (1999) Use of Pichia pastoris for expression of recombinant proteins. Methods Enzymol 306:154–169CrossRefGoogle Scholar
  49. Ruschak AM, Velyvis A, Kay LE (2010) A simple strategy for 13C, 1H labeling at the Ile-γ2 methyl position in highly deuterated proteins. J Biomol NMR 48:129–135CrossRefGoogle Scholar
  50. Sakurai K, Goto Y (2002) Manipulating monomer-dimer equilibrium of bovine β-lactoglobulin by amino acid substitution. J Biol Chem 277:25735–25740CrossRefGoogle Scholar
  51. Sakurai K, Goto Y (2007) Principal component analysis of the pH-dependent conformational transisions of bovine β-Lactoglobulin monitored by heteronuclear NMR. Proc Natl Acad Sci USA 104:15346–15351ADSCrossRefGoogle Scholar
  52. Sawyer L, Kontopidis G (2000) The core lipocalin, bovine beta-lactoglobulin. Biochim Biophys Acta 1482:136–148CrossRefGoogle Scholar
  53. Shi Y (2014) A glimpse of structural biology through X-ray crystallography. Cell 159:995–1014CrossRefGoogle Scholar
  54. Singh S, Gras A, Fiez-Vandal C, Ruprecht J, Rana R, Martinez M, Strange PG, Wagner R, Byme B (2008) Large-scale functional expression of WT and truncated human adenosine A2A receptor in Pichia pastoris bioreactor cultures. Microb Cell Fact 7:28CrossRefGoogle Scholar
  55. Solà A, Maaheimo H, Ylönen K, Ferrer P, Szyperski T (2004) Amino acid biosynthesis and metabolic flux profiling of Pichia pastoris. Eur J Biochem 271:2462–2470CrossRefGoogle Scholar
  56. Solà A, Jouhten P, Maaheimo H, Sánchez-Ferrando F, Szyperski T, Ferrer P (2007) Metabolic flux profiling of Pichia pastoris grown on glycerol/methanol mixtures in chemostat cultures at low and high dilution rates. Microbiology 153:190–281CrossRefGoogle Scholar
  57. Souffriau B, den Abt T, Thevelein JM (2012) Evidence for rapid uptake of D-galacturonic acid in the yeast Saccharomyces cerevisiae by a channel-type transport system. FEBS Lett 586:2494–2499CrossRefGoogle Scholar
  58. Sugiki T, Ichikawa O, Miyazawa-Onami M, Shimada I, Takahashi H (2012) Isotopic labeling of heterologous proteins in the yeast Pichia pastoris and Kluyveromyces lactis. Methods Mol Biol 831:19–36CrossRefGoogle Scholar
  59. Takahashi H, Miyazawa M, Ina Y, Fukunishi Y, Mizukoshi Y, Nakamura H, Shimada I (2006) Utilization of methyl proton resonances in cross-saturation measurement for determining the interfaces of large protein-protein complexes. J Biomol NMR 34:167–177CrossRefGoogle Scholar
  60. Tate CG (2001) Overexpression of mammalian integral membrane proteins for structural studies. FEBS Lett 504:94–98CrossRefGoogle Scholar
  61. Tugarinov V, Hwang PM, Ollerenshaw J, Key LE (2003) Cross-correlated relaxation enhanced 1H–13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428CrossRefGoogle Scholar
  62. Uhrínová S, Uhrín D, Denton H, Smith M, Sawyer L, Barlow PN (1998) Complete assignment of 1H, 13C and 15N chemical shifts for bovine β-lactoglobulin: secondary structure and topology of the native state is retained in a partially unfolded form. J Biomol NMR 12:89–107CrossRefGoogle Scholar
  63. Velyvis A, Ruschak AM, Kay LE (2012) An economical method for production of 2H,13CH3-threonine for solution NMR studies of large protein complexes: application to the 670 kDa proteasome. PLoS ONE 7:e43725ADSCrossRefGoogle Scholar
  64. Wetterholm A, Martinez Molina D, Nordlund P, Eshaghi S, Haeggström JZ (2008) High-level expression, purification, and crystallization of recombinant rat leukotriene C4 synthase from the yeast Pichia pastoris. Protein Expr Purif 60:1–6CrossRefGoogle Scholar
  65. Wiesner S, Sprangers R (2015) Methyl groups as NMR probes for biomolecular interactions. Curr Opin Struct Biol 35:60–67CrossRefGoogle Scholar
  66. Yu ZW, Quinn PJ (1994) Dimethyl sulphoxide: a review of its applications in cell biology. Biosci Rep 14:259–281CrossRefGoogle Scholar
  67. Zhang M, Yu XW, Xu Y, Jouhten P, Swapna GVT, Glaser RW, Hunt JF, Montelione GT, Maaheimo H, Szyperski T (2017) 13C metabolic flux profiling of Pichia pastoris grown in aerobic batch cultures on glucose revealed high relative anabolic use of TCA cycle and limited incorporation of provided precursors of branched-chain amino acids. FEBS J 284:3100–3113CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Rika Suzuki
    • 1
  • Masayoshi Sakakura
    • 1
  • Masaki Mori
    • 1
  • Moe Fujii
    • 1
  • Satoko Akashi
    • 1
  • Hideo Takahashi
    • 1
  1. 1.Graduate School of Medical Life ScienceYokohama City UniversityYokohamaJapan

Personalised recommendations