Advertisement

Journal of Biomolecular NMR

, Volume 71, Issue 3, pp 193–202 | Cite as

Stable isotope labeling approaches for NMR characterization of glycoproteins using eukaryotic expression systems

  • Saeko Yanaka
  • Hirokazu Yagi
  • Rina Yogo
  • Maho Yagi-Utsumi
  • Koichi Kato
Article

Abstract

Glycoproteins are characterized by the heterogeneous and dynamic nature of their glycan moieties, which hamper crystallographic analysis. NMR spectroscopy provides potential advantages in dealing with such complicated systems, given that the target molecules can be isotopically labeled. Methods of metabolic isotope labeling in recombinant glycoproteins have been developed recently using a variety of eukaryotic production vehicles, including mammalian, yeast, insect, and plant cells, each of which has a distinct N-glycan diversification pathway. Yeast genetic engineering has enabled the overexpression of homogeneous high-mannose-type oligosaccharides with 13C labeling for NMR characterization of their conformational dynamics. The utility of stable isotope-assisted NMR spectroscopy has also been demonstrated using the Fc fragment of immunoglobulin G (IgG) as a model glycoprotein, providing useful information regarding intramolecular carbohydrate–protein interactions. Transverse relaxation optimization of intact IgG with a molecular mass of 150 kDa has been achieved by tailored deuteration of selected amino acid residues using a mammalian expression system. This offers a useful probe for the characterization of molecular interaction networks in multimolecular crowded systems typified by serum. Perspectives regarding the development of techniques for tailoring glycoform designs and isotope labeling of recombinant glycoproteins are also discussed.

Keywords

Stable isotope labeling Oligosaccharide Glycoprotein Eukaryotic expression system Antibody Serum 

Notes

Acknowledgements

Stable isotope labeling was supported by Taiyo Nippon Sanso Co. We particularly thank Dr. Tsutomu Terauchi for useful discussion. We also thank Dr. Hajime Sato (Bruker BioSpin) for his help in the NMR measurements. We thank Ms. Kiyomi Senda and Ms. Kumiko Hattori (Nagoya City University) for their help in protein purification. This work was partly supported by the Nanotechnology Platform Program (Molecule and Material Synthesis) of MEXT, MEXT/JSPS Grants in Aid for Scientific Research (JP25102008, JP15K07935, JP17H06414 and JP17H05893).

Supplementary material

10858_2018_169_MOESM1_ESM.docx (5.9 mb)
Supplementary material 1 (DOCX 6013 KB)

References

  1. Aebi M, Bernasconi R, Clerc S, Molinari M (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35:74–82CrossRefGoogle Scholar
  2. Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4–8CrossRefGoogle Scholar
  3. Arata Y, Kato K, Takahashi H, Shimada I (1994) Nuclear magnetic resonance study of antibodies: a multinuclear approach. Methods Enzymol 239:440–464CrossRefGoogle Scholar
  4. Chiba Y, Akeboshi H (2009) Glycan engineering and production of ‘humanized’ glycoprotein in yeast cells. Biol Pharm Bull 32:786–795CrossRefGoogle Scholar
  5. Crespi HL, Rosenberg RM, Katz JJ (1968) Proton magnetic resonance of proteins fully deuterated except for 1H-leucine side chains. Science 161:795–796ADSCrossRefGoogle Scholar
  6. Deisenhofer J (1981) Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-Å resolution. Biochemistry 20:2361–2370CrossRefGoogle Scholar
  7. Dekkers G, Treffers L, Plomp R, Bentlage AEH, de Boer M, Koeleman CAM, Lissenberg-Thunnissen SN, Visser R, Brouwer M, Mok JY, Matlung H, van den Berg TK, van Esch WJE, Kuijpers TW, Wouters D, Rispens T, Wuhrer M, Vidarsson G (2017) Decoding the human immunoglobulin G-Glycan repertoire reveals a spectrum of Fc-receptor- and complement-mediated-effector activities. Front Immunol 8:877CrossRefGoogle Scholar
  8. Fan SQ, Huang W, Wang LX (2012) Remarkable transglycosylation activity of glycosynthase mutants of endo-D, an endo-beta-N-acetylglucosaminidase from Streptococcus pneumoniae. J Biol Chem 287:11272–11281CrossRefGoogle Scholar
  9. Ferrara C, Grau S, Jäger C, Sondermann P, Brünker P, Waldhauer I, Hennig M, Ruf A, Rufer AC, Stihle M, Ũmana P, Benz J (2011) Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcγRIII and antibodies lacking core fucose. Proc Natl Acad Sci USA 108:12669–12674ADSCrossRefGoogle Scholar
  10. Freedberg DI, Selenko P (2014) Live cell NMR. Ann Rev Biophys 43:171–192CrossRefGoogle Scholar
  11. Hoffmann GW (1975) A theory of regulation and self-nonself discrimination in an immune network. Eur J Immunol 5:638–647CrossRefGoogle Scholar
  12. Hosokawa N, Kamiya Y, Kamiya D, Kato K, Nagata K (2009) Human OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans. J Biol Chem 284:17061–17068CrossRefGoogle Scholar
  13. Huang W, Giddens J, Fan SQ, Toonstra C, Wang LX (2012) Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions. J Am Chem Soc 134:12308–12318CrossRefGoogle Scholar
  14. Isoda Y, Yagi H, Satoh T, Shibata-Koyama M, Masuda K, Satoh M, Kato K, Iida S (2015). Importance of the side chain at position 296 of antibody Fc in interactions with FcγRIIIa and other Fcγ receptors. PLoS ONE 10:e0140120CrossRefGoogle Scholar
  15. Jarrell KF, Ding Y, Meyer BH, Albers SV, Kaminski L, Eichler J (2014) N-linked glycosylation in Archaea: a structural, functional, and genetic analysis. Microbiol Mol Biol Rev 78:304–341CrossRefGoogle Scholar
  16. Jefferis R (2016) Glyco-engineering of human IgG-Fc to modulate biologic activities. Curr Pharm Biotechnol 17:1333–1347CrossRefGoogle Scholar
  17. Jerne NK (1974) Towards a network theory of the immune system. Ann Immunol 125C:373–389Google Scholar
  18. Kainosho M, Güntert P (2009) SAIL—stereo-array isotope labeling. Quart Rev Biophys 42:247–300CrossRefGoogle Scholar
  19. Kalbitzer HR, Leberman R, Wittinghofer A (1985) 1H-NMR spectroscopy on elongation factor Tu from Escherichia coli. FEBS Lett 180:40–42CrossRefGoogle Scholar
  20. Kamiya Y, Yamamoto S, Chiba Y, Jigami Y, Kato K (2011) Overexpression of a homogeneous oligosaccharide with 13C labeling by genetically engineered yeast strain. J Biomol NMR 50:397–401CrossRefGoogle Scholar
  21. Kamiya Y, Satoh T, Kato K (2012) Molecular and structural basis for N-glycan-dependent determination of glycoprotein fates in cells. Biochim Biophys Acta 1820:1327–1337CrossRefGoogle Scholar
  22. Kamiya Y, Yanagi K, Kitajima T, Yamaguchi T, Chiba Y, Kato K (2013) Application of metabolic 13C labeling in conjunction with high-field nuclear magnetic resonance spectroscopy for comparative conformational analysis of high mannose-type oligosaccharides. Biomolecules 3:108–123CrossRefGoogle Scholar
  23. Kamiya Y, Satoh T, Kato K (2014) Recent advances in glycoprotein production for structural biology: toward tailored design of glycoforms. Curr Opin Struct Biol 26:44–53CrossRefGoogle Scholar
  24. Kato K, Kamiya Y (2007) Structural views of glycoprotein-fate determination in cells. Glycobiology 17:1031–1044ADSCrossRefGoogle Scholar
  25. Kato K, Yamaguchi Y (2012) Glycoproteins and antibodies: solution NMR studies. In: Encyclopedia of magnetic resonance. Wiley, Chichester, pp 1779–1790Google Scholar
  26. Kato K, Yamaguchi T (2015) Paramagnetic NMR probes for characterization of the dynamic conformations and interactions of oligosaccharides. Glycoconjugate J 32:505–513CrossRefGoogle Scholar
  27. Kato K, Matsunaga C, Nishimura Y, Waelchli M, Kainosho M, Arata Y (1989a) Application of 13C nuclear magnetic resonance spectroscopy to molecular structural analyses of antibody molecules. J Biochem 105:867–869CrossRefGoogle Scholar
  28. Kato K, Nishimura Y, Waelchli M, Arata Y (1989b) Proton nuclear magnetic resonance study of a selectively deuterated mouse monoclonal antibody: use of two-dimensional homonuclear Hartmann-Hahn spectroscopy. J Biochem 106:361–364CrossRefGoogle Scholar
  29. Kato K, Yamaguchi Y, Arata Y (2010) Stable-isotope-assisted NMR approaches to glycoproteins using immunoglobulin G as a model system. Prog Nucl Mag Res Spectrosc 56:346–359CrossRefGoogle Scholar
  30. Kato K, Yagi H, Yamaguchi T (2017). NMR Characterization of the dynamic conformations of oligosaccharides. In: Webb GA (ed) Modern magnetic resonance, Springer, New York, pp 1–18Google Scholar
  31. Kato K, Yanaka S, Yagi H (2018) Technical basis for nuclear magnetic resonance approach for glycoproteins. In: Naito A, Asakura T, Shimada I, Takegoshi K, Yamamoto Y (eds) Experimental approaches of nmr spectroscopy-methodology and application to life science and materials science. Springer, Tokyo, pp 415–438Google Scholar
  32. Kowarik M, Young NM, Numao S, Schulz BL, Hug I, Callewaert N, Mills DC, Watson DC, Hernandez M, Kelly JF, Wacker M, Aebi M (2006) Definition of the bacterial N-glycosylation site consensus sequence. EMBO J 25:1957–1966CrossRefGoogle Scholar
  33. Kozlov G, Pocanschi CL, Rosenauer A, Bastos-Aristizabal S, Gorelik A, Williams DB, Gehring K (2010) Structural basis of carbohydrate recognition by calreticulin. J Biol Chem 285:38612–38620CrossRefGoogle Scholar
  34. Kunert R, Reinhart D (2016) Advances in recombinant antibody manufacturing. Appl Microbiol Biotechnol 100:3451–3461CrossRefGoogle Scholar
  35. Lederkremer GZ (2009) Glycoprotein folding, quality control and ER-associated degradation. Curr Opin Struct Biol 19:515–523CrossRefGoogle Scholar
  36. LeMaster DM, Richards FM (1988) NMR sequential assignment of Escherichia coli thioredoxin utilizing random fractional deuteriation. Biochemistry 27:142–150CrossRefGoogle Scholar
  37. Li F, Vijayasankaran N, Shen AY, Kiss R, Amanullah A (2010) Cell culture processes for monoclonal antibody production. MAbs 2:466–479CrossRefGoogle Scholar
  38. Li T, DiLillo DJ, Bournazos S, Giddens JP, Ravetch JV, Wang LX (2017) Modulating IgG effector function by Fc glycan engineering. Proc Natl Acad Sci USA 114:3485–3490CrossRefGoogle Scholar
  39. Liu D, Cowburn D (2017) Segmental isotopic labeling of proteins for NMR study using intein technology. Methods Mol Biol 1495:131–145CrossRefGoogle Scholar
  40. Liu DS, Xu R, Cowburn D (2009) Segmental isotopic labeling of proteins for nuclear magnetic resonance. Method Enzymol 462:151–175CrossRefGoogle Scholar
  41. Markley JL, Putter I, Jardetzky O (1968) High-resolution nuclear magnetic resonance spectra of selectively deuterated staphylococcal nuclease. Science 161:1249–1251ADSCrossRefGoogle Scholar
  42. Matsumiya S, Yamaguchi Y, Saito J, Nagano M, Sasakawa H, Otaki S, Satoh M, Shitara K, Kato K (2007) Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin G1. J Mol Biol 368:767–779CrossRefGoogle Scholar
  43. Miyanoiri Y, Ishida Y, Takeda M, Terauchi T, Inouye M, Kainosho M (2016) Highly efficient residue-selective labeling with isotope-labeled Ile, Leu, and Val using a new auxotrophic E. coli strain. J Biomol NMR 65:109–119CrossRefGoogle Scholar
  44. Mizushima T, Yagi H, Takemoto E, Shibata-Koyama M, Isoda Y, Iida S, Masuda K, Satoh M, Kato K (2011) Structural basis for improved efficacy of therapeutic antibodies upon defucosylation of their Fc glycans. Genes Cells 16:1071–1080CrossRefGoogle Scholar
  45. Niwa R, Shoji-Hosaka E, Sakurada M, Shinkawa T, Uchida K, Nakamura K, Matsushima K, Ueda R, Hanai N, Shitara K (2004) Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res 64:2127–2133CrossRefGoogle Scholar
  46. Omasa T, Onitsuka M, Kim WD (2010) Cell engineering and cultivation of chinese hamster ovary (CHO) cells. Curr Pharm Biotechnol 11:233–240CrossRefGoogle Scholar
  47. Opitz C, Isogai S, Grzesiek S (2015) An economic approach to efficient isotope labeling in insect cells using homemade 15N-, 13C- and 2H-labeled yeast extracts. J Biomol NMR 62:373–385CrossRefGoogle Scholar
  48. Satoh T, Chen Y, Hu D, Hanashima S, Yamamoto K, Yamaguchi Y (2010) Structural basis for oligosaccharide recognition of misfolded glycoproteins by OS-9 in ER-associated degradation. Mol Cell 40:905–916CrossRefGoogle Scholar
  49. Sattler M, Fesik SW (1996) Use of deuterium labeling in NMR: overcoming a sizeable problem. Structure 4:1245–1249CrossRefGoogle Scholar
  50. Saxena K, Dutta A, Klein-Seetharaman J, Schwalbe H (2012) Isotope labeling in insect cells. Methods Mol Biol 831:37–54CrossRefGoogle Scholar
  51. Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, Weikert SH, Presta LG (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740CrossRefGoogle Scholar
  52. Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278:3466–3473CrossRefGoogle Scholar
  53. Simmons LC, Reilly D, Klimowski L, Raju TS, Meng G, Sims P, Hong K, Shields RL, Damico LA, Rancatore P, Yansura DG (2002) Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods 263:133–147CrossRefGoogle Scholar
  54. Stolfa G, Smonskey MT, Boniface R, Hachmann AB, Gulde P, Joshi AD, Pierce AP, Jacobia SJ, Campbell A (2017). CHO-omics review: the impact of current and emerging technologies on chinese hamster ovary based bioproduction. Biotechnol J.  https://doi.org/10.1002/biot.201700227.Google Scholar
  55. Suzuki T, Kajino M, Yanaka S, Zhu T, Yagi H, Satoh T, Yamaguchi T, Kato K (2017) Conformational analysis of a high-mannose-type oligosaccharide displaying glucosyl determinant recognised by molecular chaperones using NMR-validated molecular dynamics simulation. Chembiochem 18:396–401CrossRefGoogle Scholar
  56. Takeda Y, Totani K, Matsuo I, Ito Y (2009) Chemical approaches toward understanding glycan-mediated protein quality control. Curr Opin Chem Biol 13:582–591CrossRefGoogle Scholar
  57. Valderrama-Rincon JD, Fisher AC, Merritt JH, Fan YY, Reading CA, Chhiba K, Heiss C, Azadi P, Aebi M, DeLisa MP (2012) An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat Chem Biol 8:434–436CrossRefGoogle Scholar
  58. Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, TKinoshita a., Packer NH, Prestegard JH, Schnaar RL, Seeberger PH (eds) (2017) Essentials of glycobiology, 3rd edn. Cold Spring Harbor Laboratory Press, La JollaGoogle Scholar
  59. Walsh G (2014) Biopharmaceutical benchmarks 2014. Nat Biotechnol 32:992–1000CrossRefGoogle Scholar
  60. Walton WJ, Kasprzak AJ, Hare JT, Logan TM (2006) An economic approach to isotopic enrichment of glycoproteins expressed from Sf9 insect cells. J Biomol NMR 36:225–233CrossRefGoogle Scholar
  61. Wang LX, Lomino JV (2012) Emerging technologies for making glycan-defined glycoproteins. ACS Chem Biol 7:110–122CrossRefGoogle Scholar
  62. Yagi H, Fukuzawa N, Tasaka Y, Matsuo K, Zhang Y, Yamaguchi T, Kondo S, Nakazawa S, Hashii N, Kawasaki N, Matsumura T, Kato K (2015a) NMR-based structural validation of therapeutic antibody produced in Nicotiana benthamiana. Plant Cell Rep 34:959–968CrossRefGoogle Scholar
  63. Yagi H, Nakamura M, Yokoyama J, Zhang Y, Yamaguchi T, Kondo S, Kobayashi J, Kato T, Park EY, Nakazawa S, Hashii N, Kawasaki N, Kato K (2015b) Stable isotope labeling of glycoprotein expressed in silkworms using immunoglobulin G as a test molecule. J Biomol NMR 62:157–167CrossRefGoogle Scholar
  64. Yagi H, Zhang Y, Yagi-Utsumi M, Yamaguchi T, Iida S, Yamaguchi Y, Kato K (2015c) Backbone 1H, 13C, and 15N resonance assignments of the Fc fragment of human immunoglobulin G glycoprotein. Biomol NMR Assign 9:257–260CrossRefGoogle Scholar
  65. Yamaguchi Y, Kato K (2010) Dynamics and interactions of glycoconjugates probed by stable-isotope-assisted NMR spectroscopy. Methods Enzymol 478:305–322CrossRefGoogle Scholar
  66. Yamaguchi Y, Kato K, Shindo M, Aoki S, Furusho K, Koga K, Takahashi N, Arata Y, Shimada I (1998) Dynamics of the carbohydrate chains attached to the Fc portion of immunoglobulin G as studied by NMR spectroscopy assisted by selective 13C labeling of the glycans. J Biomol NMR 12:385–394CrossRefGoogle Scholar
  67. Yamaguchi Y, Nishimura M, Nagano M, Yagi H, Sasakawa H, Uchida K, Shitara K, Kato K (2006) Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy. Biochim et Biophysica Acta 1760:693–700CrossRefGoogle Scholar
  68. Yamaguchi Y, Takahashi N, Kato K (2007). Molecular interactions: antibody structures. In: Kamerling JP (ed) Comprehensive glycoscience. Elsevier, Oxford, pp 745–763CrossRefGoogle Scholar
  69. Yamaguchi T, Sakae Y, Zhang Y, Yamamoto S, Okamoto Y, Kato K (2014) Exploration of conformational spaces of high-mannose-type oligosaccharides by an NMR-validated simulation. Angew Chem 53:10941–10944CrossRefGoogle Scholar
  70. Yamaguchi Y, Yagi H, Kato K (2017). Stable isotope labeling of glycoproteins for NMR study. In: Kato K, Peters T (eds) NMR in glycoscience and glycotechnology. RSC Publishing, Cambridge, pp 194–205CrossRefGoogle Scholar
  71. Yanaka S, Yamazaki T, Yogo R, Noda M, Uchiyama S, Yagi H, Kato K (2017) NMR detection of semi-specific antibody interactions in serum environments. Molecules 22(10):1619CrossRefGoogle Scholar
  72. Zhu T, Yamaguchi T, Satoh T, Kato K (2015) A hybrid strategy for the preparation of 13C-labeled high-mannose-type oligosaccharides with terminal glucosylation for NMR study. Chem Lett 44(12):1744–1746CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Saeko Yanaka
    • 1
    • 2
  • Hirokazu Yagi
    • 2
  • Rina Yogo
    • 1
    • 2
  • Maho Yagi-Utsumi
    • 1
    • 2
  • Koichi Kato
    • 1
    • 2
  1. 1.Institute for Molecular Science and Okazaki Institute for Integrative BioscienceNational Institutes of Natural SciencesOkazakiJapan
  2. 2.Graduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan

Personalised recommendations