Advertisement

Journal of Biomolecular NMR

, Volume 70, Issue 1, pp 1–9 | Cite as

Simultaneous determination of fast and slow dynamics in molecules using extreme CPMG relaxation dispersion experiments

  • Jithender G. Reddy
  • Supriya Pratihar
  • David Ban
  • Sebastian Frischkorn
  • Stefan Becker
  • Christian Griesinger
  • Donghan LeeEmail author
Communication

Abstract

Molecular dynamics play a significant role in how molecules perform their function. A critical method that provides information on dynamics, at the atomic level, is NMR-based relaxation dispersion (RD) experiments. RD experiments have been utilized for understanding multiple biological processes occurring at micro-to-millisecond time, such as enzyme catalysis, molecular recognition, ligand binding and protein folding. Here, we applied the recently developed high-power RD concept to the Carr–Purcell–Meiboom–Gill sequence (extreme CPMG; E-CPMG) for the simultaneous detection of fast and slow dynamics. Using a fast folding protein, gpW, we have shown that previously inaccessible kinetics can be accessed with the improved precision and efficiency of the measurement by using this experiment.

Keywords

Protein dynamics Relaxation dispersion Extreme CPMG Conformational exchange µs–ms dynamics 

Notes

Acknowledgements

This work was supported by the James Graham Brown Foundation, the National Center for Research Resources CoBRE 1P30GM106396, the Max Planck Society, and the EU (ERC Grant Agreement Number 233227 to C.G.). We thank Maria Paulat and Melanie Wegstroth for technical help in gpW sample preparation.

Supplementary material

10858_2017_155_MOESM1_ESM.docx (4.5 mb)
Supplementary material 1 (DOCX 4654 KB)

References

  1. Akke M, Palmer AG (1996) Monitoring macromolecular motions on microsecond to millisecond time scales by R(1)rho-R(1) constant relaxation time NMR spectroscopy. J Am Chem Soc 118:911–912CrossRefGoogle Scholar
  2. Akke M, Liu J, Cavanagh J, Erickson HP, Palmer AG (1998) Pervasive conformational fluctuations on microsecond time scales in a fibronectin type III domain. Nat Struct Biol 5:55–59CrossRefGoogle Scholar
  3. Ban D et al (2011) Kinetics of conformational sampling in ubiquitin. Angew Chem Int Ed 50:11437–11440CrossRefGoogle Scholar
  4. Ban D et al (2012) Exceeding the limit of dynamics studies on biomolecules using high spin-lock field strengths with a cryogenically cooled probehead. J Magn Reson 221:1–4ADSCrossRefGoogle Scholar
  5. Ban D et al (2013) Enhanced accuracy of kinetic information from CT-CPMG experiments by transverse rotating-frame spectroscopy. J Biomol NMR 57:73–82CrossRefGoogle Scholar
  6. Boehr DD, Dyson HJ, Wright PE (2006) An NMR perspective on enzyme dynamics. Chem Rev 106:3055–3079CrossRefGoogle Scholar
  7. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638ADSCrossRefGoogle Scholar
  8. Eisenmesser EZ et al (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438:117–121ADSCrossRefGoogle Scholar
  9. Fung A, Li P, Godoy-Ruiz R, Sanchez-Ruiz JM, Munoz V (2008) Expanding the realm of ultrafast protein folding: gpW, a midsize natural single-domain with alpha + beta topology that folds downhill. J Am Chem Soc 130:7489–7495CrossRefGoogle Scholar
  10. Hansen DF, Vallurupalli P, Kay LE (2008) An improved (15)N relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins. J Phys Chem B 112:5898–5904CrossRefGoogle Scholar
  11. Ishima R (2012) Recent developments in (15)N NMR relaxation studies that probe protein backbone dynamics. Top Curr Chem 326:99–122CrossRefGoogle Scholar
  12. Ishima R, Torchia DA (2003) Extending the range of amide proton relaxation dispersion experiments in proteins using a constant-time relaxation-compensated CPMG approach. J Biomol NMR 25:243–248CrossRefGoogle Scholar
  13. Jiang B, Yu B, Zhang X, Liu M, Yang D (2015) A (15)N CPMG relaxation dispersion experiment more resistant to resonance offset and pulse imperfection. J Magn Reson 257:1–7ADSCrossRefGoogle Scholar
  14. Kay LE, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665CrossRefGoogle Scholar
  15. Korzhnev DM, Kay LE (2008) Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding. Acc Chem Res 41:442–451CrossRefGoogle Scholar
  16. Korzhnev DM, Tischenko EV, Arseniev AS (2000) Off-resonance effects in 15N T2 CPMG measurements. J Biomol NMR 17:231–237CrossRefGoogle Scholar
  17. Korzhnev DM, Orekhov VY, Kay LE (2005) Off-resonance R(1rho) NMR studies of exchange dynamics in proteins with low spin-lock fields: an application to a Fyn SH3 domain. J Am Chem Soc 127:713–721CrossRefGoogle Scholar
  18. Lange OF et al (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471–1475ADSCrossRefGoogle Scholar
  19. Long D, Liu M, Yang D (2008) Accurately probing slow motions on millisecond timescales with a robust NMR relaxation experiment. J Am Chem Soc 130:2432–2433CrossRefGoogle Scholar
  20. Loria JP, Rance M, Palmer AG (1999) A relaxation-compensated Carr–Purcell–Meiboom–Gill sequence for characterizing chemical exchange by NMR spectroscopy. J Am Chem Soc 121:2331–2332CrossRefGoogle Scholar
  21. Marion D, Ikura M, Tschudin R, Bax A (1989) Rapid recording of 2d NMR-spectra without phase cycling: application to the study of hydrogen-exchange in proteins. J Magn Reson 85:393–399ADSGoogle Scholar
  22. Meekhof AE, Hamill SJ, Arcus VL, Clarke J, Freund SMV (1998) The dependence of chemical exchange on boundary selection in a fibronectin type III domain from human tenascin. J Mol Biol 282:181–194CrossRefGoogle Scholar
  23. Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691ADSCrossRefGoogle Scholar
  24. Mittermaier A, Kay LE (2006) New tools provide new insights in NMR studies of protein dynamics. Science 312:224–228ADSCrossRefGoogle Scholar
  25. Moschen T et al (2016) Measurement of ligand-target residence times by 1H relaxation dispersion NMR spectroscopy. J Med Chem 59:10788–10793CrossRefGoogle Scholar
  26. Mulder FAA, van Tilborg PJA, Kaptein R, Boelens R (1999) Microsecond time scale dynamics in the RXR DNA-binding domain from a combination of spin-echo and off-resonance rotating frame relaxation measurements. J Biomol NMR 13:275–288CrossRefGoogle Scholar
  27. Naganathan AN, Doshi U, Munoz V (2007) Protein folding kinetics: barrier effects in chemical and thermal denaturation experiments. J Am Chem Soc 129:5673–5682CrossRefGoogle Scholar
  28. Neudecker P, Lundstrom P, Kay LE (2009) Relaxation dispersion NMR spectroscopy as a tool for detailed studies of protein folding. Biophys J 96:2045–2054CrossRefGoogle Scholar
  29. Orekhov VY, Pervushin KV, Arseniev AS (1994) Backbone dynamics of (1–71)Bacterioopsin studied by 2-dimensional H-1-N-15 NMR-spectroscopy. Eur J Biochem 219:887–896CrossRefGoogle Scholar
  30. Palmer AG 3rd, Kroenke CD, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 339:204–238CrossRefGoogle Scholar
  31. Palmer AG 3rd (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104:3623–3640CrossRefGoogle Scholar
  32. Palmer AG 3rd (2015) Enzyme dynamics from NMR spectroscopy. Acc Chem Res 48:457–465CrossRefGoogle Scholar
  33. Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371ADSCrossRefGoogle Scholar
  34. Pratihar S et al (2016) Kinetics of the antibody recognition site in the third IgG-binding domain of protein G. Angew Chem Int Ed 55:9566–9569CrossRefGoogle Scholar
  35. Sanchez-Medina C et al (2014) Probing the free energy landscape of the fast-folding gpW protein by relaxation dispersion NMR. J Am Chem Soc 136:7444–7451CrossRefGoogle Scholar
  36. Sborgi L, Verma A, Munoz V, de Alba E (2011) Revisiting the NMR structure of the ultrafast downhill folding protein gpW from bacteriophage lambda. PLoS ONE 6:e26409ADSCrossRefGoogle Scholar
  37. Sborgi L et al (2015) Interaction networks in protein folding via atomic-resolution experiments and long-time-scale molecular dynamics simulations. J Am Chem Soc 137:6506–6516CrossRefGoogle Scholar
  38. Schleucher J, Sattler M, Griesinger C (1993) Coherence selection by gradients without signal attenuation: application to the 3-dimensional Hnco experiment. Angew Chem Int Ed Engl 32:1489–1491CrossRefGoogle Scholar
  39. Schneider R et al (2015) Visualizing the molecular recognition trajectory of an intrinsically disordered protein using multinuclear relaxation dispersion NMR. J Am Chem Soc 137:1220–1229CrossRefGoogle Scholar
  40. Skrynnikov NR, Dahlquist FW, Kay LE (2002) Reconstructing NMR spectra of “invisible” excited protein states using HSQC and HMQC experiments. J Am Chem Soc 124:12352–12360CrossRefGoogle Scholar
  41. Smith CA et al (2015) Population shuffling of protein conformations. Angew Chem Int Ed 54:207–210CrossRefGoogle Scholar
  42. Szyperski T, Luginbuhl P, Otting G, Guntert P, Wuthrich K (1993) Protein dynamics studied by rotating frame N-15 spin relaxation-times. J Biomol NMR 3:151–164Google Scholar
  43. Tamiola K, Acar B, Mulder FA (2010) Sequence-specific random coil chemical shifts of intrinsically disordered proteins. J Am Chem Soc 132:18000–18003CrossRefGoogle Scholar
  44. Tollinger M, Skrynnikov NR, Mulder FA, Forman-Kay JD, Kay LE (2001) Slow dynamics in folded and unfolded states of an SH3 domain. J Am Chem Soc 123:11341–11352CrossRefGoogle Scholar
  45. Trott O, Palmer AG 3rd (2002) R1rho relaxation outside of the fast-exchange limit. J Magn Reson 154:157–160ADSCrossRefGoogle Scholar
  46. Tugarinov V, Libich DS, Meyer V, Roche J, Clore GM (2015) The energetics of a three-state protein folding system probed by high-pressure relaxation dispersion NMR spectroscopy. Angew Chem Int Ed Engl 54:11157–11161CrossRefGoogle Scholar
  47. Vallurupalli P, Bouvignies G, Kay LE (2011) Increasing the exchange time-scale that can be probed by CPMG relaxation dispersion NMR. J Phys Chem B 115:14891–14900CrossRefGoogle Scholar
  48. Yip GN, Zuiderweg ER (2004) A phase cycle scheme that significantly suppresses offset-dependent artifacts in the R2-CPMG 15N relaxation experiment. J Magn Reson 171:25–36ADSCrossRefGoogle Scholar
  49. Zinn-Justin S, Berthault P, Guenneugues M, Desvaux H (1997) Off-resonance rf fields in heteronuclear NMR: application to the study of slow motions. J Biomol NMR 10:363–372CrossRefGoogle Scholar
  50. Zintsmaster JS, Wilson BD, Peng JW (2008) Dynamics of ligand binding from 13C NMR relaxation dispersion at natural abundance. J Am Chem Soc 130:14060–14061CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Jithender G. Reddy
    • 1
    • 2
  • Supriya Pratihar
    • 1
  • David Ban
    • 3
  • Sebastian Frischkorn
    • 1
  • Stefan Becker
    • 1
  • Christian Griesinger
    • 1
  • Donghan Lee
    • 3
    Email author
  1. 1.Department for NMR-based Structural BiologyMax-Planck Institute for Biophysical ChemistryGöttingenGermany
  2. 2.NMR & Structural Chemistry DivisionCSIR-Indian Institute of Chemical TechnologyHyderabadIndia
  3. 3.Department of Medicine, James Graham Brown Cancer CenterUniversity of LouisvilleLouisvilleUSA

Personalised recommendations