Journal of Biomolecular NMR

, Volume 69, Issue 4, pp 207–213 | Cite as

The conformation of the Congo-red ligand bound to amyloid fibrils HET-s(218–289): a solid-state NMR study

  • Chandrakala Gowda
  • Giorgia Zandomeneghi
  • Herbert Zimmermann
  • Anne K. Schütz
  • Anja Böckmann
  • Matthias ErnstEmail author
  • Beat H. MeierEmail author


We have previously shown that Congo red (CR) binds site specifically to amyloid fibrils formed by HET-s(218–289) with the long axis of the CR molecule almost parallel to the fibril axis. HADDOCK docking studies indicated that CR adopts a roughly planar conformation with the torsion angle ϕ characterizing the relative orientation of the two phenyl rings being a few degrees. In this study, we experimentally determine the torsion angle ϕ at the center of the CR molecule when bound to HET-s(218–289) amyloid fibrils using solid-state NMR tensor-correlation experiments. The method described here relies on the site-specific 13C labeling of CR and on the analysis of the two-dimensional magic-angle spinning tensor-correlation spectrum of 13C2-CR. We determined the torsion angle ϕ to be 19°.


MAS Amyloid fibrils Congo red Rotor-synchronized tensor-correlation experiments 



We would like to thank Albert A. Smith for helpful discussions. This work has been supported by the Swiss National Science Foundation SNF (Grant 200020_159707 and 200020_146757) and by the French ANR (ANR-14-CE09-0024B).

Supplementary material

10858_2017_148_MOESM1_ESM.pdf (451 kb)
Supplementary material 1 (PDF 451 KB)


  1. Ashburn TT, Han H, McGuinness BF, Lansbury PT (1996) Amyloid probes based on Congo red distinguish between fibrils comprising different peptides. Chem Biol 3:351–358CrossRefGoogle Scholar
  2. Bak M, Rasmussen JT, Nielsen NC (2000) SIMPSON: a general simulation program for solid-state NMR spectroscopy. J Magn Reson 147:296–330ADSCrossRefGoogle Scholar
  3. Bely M, Makovitzky J (2006) Sensitivity and specificity of Congo red staining according to Romhanyi. Comparison with Puchtler‘s or Bennhold’s methods. Acta Histochem 108:175–180CrossRefGoogle Scholar
  4. Benditt EP, Eriksen N, Berglund C (1970) Congo red dichroism with dispersed amyloid fibrils, an extrinsic cotton effect. Proc Natl Acad Sci USA 66:1044–1051ADSCrossRefGoogle Scholar
  5. Böttiger P (1884) Synthesis of Congo red, Deutsches Reichs Patent 28753Google Scholar
  6. Eaton VJ, Steele D (1973) Dihedral Angle of biphenyl in solution and molecular force-field. J Chem Soc Faraday Trans 2 69:1601–1608CrossRefGoogle Scholar
  7. Eichele K (2015) HBA: Herzfeld-Berger analysis program. Version1.7.5
  8. Facelli JC, Grant DM, Michl J (1987) C-13 shielding tensors: experimental and theoretical determination. Acc Chem Res 20:152–158CrossRefGoogle Scholar
  9. Frid P, Anisimov SV, Popovic N (2007) Congo red and protein aggregation in neurodegenerative diseases. Brain Res Rev 53:135–160CrossRefGoogle Scholar
  10. Glenner GG (1980) Amyloid deposits and amyloidosis. The beta-fibrilloses (first of two parts). N Engl J Med 302:1283–1292CrossRefGoogle Scholar
  11. Hagemeyer A, Schmidt-Rohr K, Spiess HW (1989) Two-dimensional nuclear magnetic resonance experiments for studying molecular order and dynamics in static and in rotating solids. Adv Magn Opt Reson 13:85–130CrossRefGoogle Scholar
  12. Herrmann US et al (2015) Structure-based drug design identifies polythiophenes as antiprion compounds. Sci Transl Med 7:299ra123CrossRefGoogle Scholar
  13. Herzfeld J, Berger AE (1980) Sideband intensities in NMR-spectra of samples spinning at the magic angle. J Chem Phys 73:6021–6030ADSCrossRefGoogle Scholar
  14. Kentgens A, De Boer E, Veeman WS (1987) Ultraslow molecular motions in crystalline polyoxymethylene: a complete elucidation using two-dimensional solid-state NMR. J Chem Phys 87:6859–6866ADSCrossRefGoogle Scholar
  15. Khurana R, Uversky VN, Nielsen L, Fink AL (2001) Is Congo red an amyloid-specific dye? J Biol Chem 276:22715–22721CrossRefGoogle Scholar
  16. Miura T, Yamamiya C, Sasaki M, Suzuki K, Takeuchi H (2002) Binding mode of Congo red to Alzheimer’s amyloid beta-peptide studied by UV Raman spectroscopy. J Raman Spectrosc 33:530–535ADSCrossRefGoogle Scholar
  17. Ojala WH, Ojala CR, Gleason WB (1995) The X-ray crystal-structure of the sulfonated azo-dye Congo-red, a nonpeptidic inhibitor of Hiv-1 protease which also binds to reverse-transcriptase and amyloid proteins. Antiviral Chem Chemother 6:25–33CrossRefGoogle Scholar
  18. Puchtler H, Sweat F, Levine M (1962) On binding of Congo red by amyloid. J Histochem Cytochem 10:355–364CrossRefGoogle Scholar
  19. Raleigh DP, Levitt MH, Griffin RG (1988) Rotational resonance in solid-state NMR. Chem Phys Lett 146:71–76ADSCrossRefGoogle Scholar
  20. Schütz AK et al (2011) The amyloid-Congo red interface at atomic resolution. Angew Chem Int Ed Engl 50:5956–5960CrossRefGoogle Scholar
  21. Smith SA, Levante TO, Meier BH, Ernst RR (1994) Computer-simulations in magnetic-resonance: an object-oriented programming approach. J Magn Reson Ser A 106:75–105ADSCrossRefGoogle Scholar
  22. Smith AA et al (2017) Partially-deuterated samples of HET-s(218–289) fibrils: assignment and deuterium isotope effect. J Biomol NMR 67:109–119CrossRefGoogle Scholar
  23. Suzuki H (1959) Relations between electronic absorption spectra and spatial configurations of conjugated systems.1. Biphenyl. Bull Chem Soc Jpn 32:1340–1350CrossRefGoogle Scholar
  24. Tycko R, Berger AE (1999) Dual processing of two-dimensional exchange data in magic angle spinning NMR of solids. J Magn Reson 141:141–147ADSCrossRefGoogle Scholar
  25. Tycko R, Weliky DP, Berger AE (1996) Investigation of molecular structure in solids by two-dimensional NMR exchange spectroscopy with magic angle spinning. J Chem Phys 105:7915–7930ADSCrossRefGoogle Scholar
  26. van Beek JD (2007) matNMR: a flexible toolbox for processing, analyzing and visualizing magnetic resonance data in Matlab. J Magn Reson Ser A 187:19–26ADSCrossRefGoogle Scholar
  27. Van Dongen Torman J, Veeman WS (1978) C-13 chemical shielding tensors in para-xylene. J Chem Phys 68:3233–3235ADSCrossRefGoogle Scholar
  28. Weliky DP, Tycko R (1996) Determination of peptide conformations by two-dimensional magic angle spinning NMR exchange spectroscopy with rotor synchronization. J Am Chem Soc 118:8487–8488CrossRefGoogle Scholar
  29. Westermark GT, Johnson KH, Westermark P (1999) Staining methods for identification of amyloid in tissue. Method Enzymol 309:3–25CrossRefGoogle Scholar
  30. Westermark P et al (2007) A primer of amyloid nomenclature. Amyloid 14:179–183CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Physical ChemistryETH ZurichZurichSwitzerland
  2. 2.Department of Biomolecular MechanismsMax-Planck-Institut für medizinische ForschungHeidelbergGermany
  3. 3.IBCP, UMR 5086 CNRS/Université de Lyon 1LyonFrance

Personalised recommendations