Journal of Biomolecular NMR

, Volume 69, Issue 2, pp 69–80 | Cite as

Mollib: a molecular and NMR data analysis software

Article
  • 514 Downloads

Abstract

Mollib is a software framework for the analysis of molecular structures, properties and data with an emphasis on data collected by NMR. It uses an open source model and a plugin framework to promote community-driven development of new and enhanced features. Mollib includes tools for the automatic retrieval and caching of protein databank (PDB) structures, the hydrogenation of biomolecules, the analysis of backbone dihedral angles and hydrogen bonds, and the fitting of residual dipolar coupling (RDC) and residual anisotropic chemical shift (RACS) data. In this article, we release version 1.0 of mollib and demonstrate its application to common molecular and NMR data analyses.

Notes

Acknowledgements

This work was supported by the NSF (#1651598).

Supplementary material

10858_2017_142_MOESM1_ESM.pdf (370 kb)
Supplementary material 1 (PDF 370 KB)

References

  1. Bax A (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci 12:1–16CrossRefGoogle Scholar
  2. Berjanskii M, Zhou J, Liang Y, Lin G, Wishart DS (2012) Resolution-by-proxy: A simple measure for assessing and comparing the overall quality of NMR protein structures. J Biomol NMR 53:167–180CrossRefGoogle Scholar
  3. Bhattacharya A, Tejero R, Montelione GT (2007) Evaluating protein structures determined by structural genomics consortia. Proteins 66:778–795CrossRefGoogle Scholar
  4. Chen VB et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21CrossRefGoogle Scholar
  5. Clore GM, Garrett DS, R-factor (1999) Free R, and complete cross-validation for dipolar coupling refinement of NMR Structures. J Am Chem Soc 121:9008–9012CrossRefGoogle Scholar
  6. Cooley RB, Arp DJ, Karplus PA (2010) Evolutionary origin of a secondary structure:pi-helices as cryptic but widespread insertional variations of α-helices that enhance protein functionality. J Mol Biol 404, 232–246CrossRefGoogle Scholar
  7. Cordier F, Grzesiek S (1999) Direct observation of hydrogen bonds in proteins by interresidue 3hJNC‘scalar couplings. J Am Chem Soc 121:1601–1602CrossRefGoogle Scholar
  8. Cornilescu G, Bax A (2000) Measurement of proton, nitrogen, and carbonyl chemical shielding anisotropies in a protein dissolved in a dilute liquid crystalline phase. J Am Chem Soc 122:10143–10154CrossRefGoogle Scholar
  9. Cornilescu G, Marquardt JL, Ottiger M, Bax A (1998) Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J Am Chem Soc 120:6836–6837CrossRefGoogle Scholar
  10. Cornilescu G et al (1999) Correlation between 3 h J NC ‘and hydrogen bond length in proteins. J Am Chem Soc 121:6275–6279CrossRefGoogle Scholar
  11. Davis IW, Murray LW, Richardson JS, Richardson DC (2004) MolProbity: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res 32:W615-9CrossRefGoogle Scholar
  12. Davis IW et al (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375-83ADSCrossRefGoogle Scholar
  13. Delaglio F et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  14. Dosset P, Hus JC, Marion D, Blackledge M (2001) A novel interactive tool for rigid-body modeling of multi- domain macromolecules using residual dipolar couplings. J Biomol NMR 20:223–231CrossRefGoogle Scholar
  15. Gajda MJ hPDB—Haskell library for processing atomic biomolecular structures in protein data bank format. BMC Res Notes 6 (2013)Google Scholar
  16. Grishaev A, Bax A (2004) An empirical backbone-backbone hydrogen-bonding potential in proteins and its applications to NMR structure refinement and validation. J Am Chem Soc 126:7281–7292CrossRefGoogle Scholar
  17. Huang YJ, Powers R, Montelione GT, Protein (2005) NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. J Am Chem Soc 127:1665–1674CrossRefGoogle Scholar
  18. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen bonded and geometrical features. Biopolymers 22:2577–2637CrossRefGoogle Scholar
  19. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291CrossRefGoogle Scholar
  20. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486CrossRefGoogle Scholar
  21. Liu Y, Prestegard JH (2010) A device for the measurement of residual chemical shift anisotropy and residual dipolar coupling in soluble and membrane-associated proteins. J Biomol NMR 47:249–258CrossRefGoogle Scholar
  22. Lorieau JL, Louis JM, Schwieters CD, Bax A (2012) pH-triggered, activated-state conformations of the influenza hemagglutinin fusion peptide revealed by NMR. Proc Natl Acad Sci U S A 109:19994–19999ADSCrossRefGoogle Scholar
  23. Losonczi J. a, Andrec M, Fischer MW, Prestegard JH (1999) Order matrix analysis of residual dipolar couplings using singular value decomposition. J Magn Reson 138:334–342ADSCrossRefGoogle Scholar
  24. Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85ADSCrossRefGoogle Scholar
  25. Ma P et al (2015) Observing the overall rocking motion of a protein in a crystal. Nat Commun 6:8361CrossRefGoogle Scholar
  26. Maltsev AS, Grishaev A, Roche J, Zasloff M, Bax A (2014) Improved cross validation of a static ubiquitin structure derived from high precision residual dipolar couplings measured in a drug-based liquid crystalline phase. J Am Chem Soc 136:3752–3755CrossRefGoogle Scholar
  27. Markley JL et al (1998) Recommendations for the presentation of NMR structures of proteins and nucleic acids. IUPAC-IUBMB-IUPAB Inter-Union Task Group on the standardization of data bases of protein and nucleic acid structures determined by NMR spectroscopy. J Biomol NMR 12:1–23CrossRefGoogle Scholar
  28. Rose ME (1957) Elementary theory of angular momentum. dover (Dover Publications, Inc., Mineola. doi:10.1007/BF02860403 MATHGoogle Scholar
  29. Saitô H, Ando I, Ramamoorthy A (2010) Chemical shift tensor—the heart of NMR: Insights into biological aspects of proteins. Prog Nucl Magn Reson Spectrosc 57:181–228CrossRefGoogle Scholar
  30. Schmidt C, Irausquin SJ, Valafar H (2013) Advances in the REDCAT software package. BMC Bioinformatics 14:302CrossRefGoogle Scholar
  31. Schneider DM, Dellwo MJ, Wand AJ (1992) Fast internal main-chain dynamics of human ubiquitin. BioChemistry 31:3645–3652CrossRefGoogle Scholar
  32. Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73ADSCrossRefGoogle Scholar
  33. Sippl MJ (1993) Recognition of errors in 3-dimensional structures of proteins. Proteins-Struct Funct Genet 17:355–362CrossRefGoogle Scholar
  34. Valafar H, Prestegard JH (2004) REDCAT: a residual dipolar coupling analysis tool. J Magn Reson 167:228–241ADSCrossRefGoogle Scholar
  35. Vijay-kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 Å resolution. J Mol Biol 194:531–544CrossRefGoogle Scholar
  36. Willard L et al (2003) VADAR: A web server for quantitative evaluation of protein structure quality. Nucleic Acids Res 31:3316–3319CrossRefGoogle Scholar
  37. Word JM, Lovell SC, Richardson JS, Richardson DC (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 285:1735–1747CrossRefGoogle Scholar
  38. Yao L, Vögeli B, Ying J, Bax A (2008) NMR determination of amide N-H equilibrium bond length from concerted dipolar coupling measurements. J Am Chem Soc 130:16518–16520CrossRefGoogle Scholar
  39. Zweckstetter M (2008) NMR: prediction of molecular alignment from structure using the PALES software. Nat Protoc 3:679–690CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations