Journal of Biomolecular NMR

, Volume 68, Issue 3, pp 215–224 | Cite as

Probing slow timescale dynamics in proteins using methyl 1H CEST

Article

Abstract

Although 15N- and 13C-based chemical exchange saturation transfer (CEST) experiments have assumed an important role in studies of biomolecular conformational exchange, 1H CEST experiments are only beginning to emerge. We present a methyl-TROSY 1H CEST experiment that eliminates deleterious 1H–1H NOE dips so that CEST profiles can be analyzed robustly to extract methyl proton chemical shifts of rare protein conformers. The utility of the experiment, along with a version that is optimized for 13CHD2 labeled proteins, is established through studies of exchanging protein systems. A comparison between methyl 1H CEST and methyl 1H CPMG approaches is presented to highlight the complementarity of the two experiments.

Keywords

1H CEST Methyl-TROSY 13CH3-/13CHD2-methyl labeling ms timescale dynamics Conformational exchange 

Notes

Acknowledgements

This work was supported by Grants from the Canadian Institutes of Health Research and the Natural Sciences and Research Council of Canada. L.E.K holds a Canada Research Chair in Biochemistry.

Supplementary material

10858_2017_121_MOESM1_ESM.pdf (289 kb)
Supplementary material 1 (PDF 289 KB)

References

  1. Boehr DD, McElheny D, Dyson HJ, Wright PE (2006) The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313:1638–1642. doi:10.1126/science.1130258 ADSCrossRefGoogle Scholar
  2. Bouvignies G, Kay LE (2012a) A 2D 13C-CEST experiment for studying slowly exchanging protein systems using methyl probes: an application to protein folding. J Biomol NMR 53:303–310. doi:10.1007/s10858-012-9640-7 CrossRefGoogle Scholar
  3. Bouvignies G, Kay LE (2012b) Measurement of proton chemical shifts in invisible states of slowly exchanging protein systems by chemical exchange saturation transfer. J Phys Chem B 116:14311–14317. doi:10.1021/jp311109u CrossRefGoogle Scholar
  4. Bouvignies G et al (2011) Solution structure of a minor and transiently formed state of a T4 lysozyme mutant. Nature 477:111–114. doi:10.1038/nature10349 ADSCrossRefGoogle Scholar
  5. Bouvignies G, Vallurupalli P, Kay LE (2014) Visualizing side chains of invisible protein conformers by solution NMR. J Mol Biol 426:763–774. doi:10.1016/j.jmb.2013.10.041 CrossRefGoogle Scholar
  6. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on Unix pipes. J Biomol NMR 6:277–293. doi:10.1007/Bf00197809 CrossRefGoogle Scholar
  7. Di Nardo AA, Korzhnev DM, Stogios PJ, Zarrine-Afsar A, Kay LE, Davidson AR (2004) Dramatic acceleration of protein folding by stabilization of a nonnative backbone conformation. Proc Natl Acad Sci USA 101:7954–7959. doi:10.1073/pnas.0400550101 ADSCrossRefGoogle Scholar
  8. Eriksson AE, Baase WA, Wozniak JA, Matthews BW (1992) A cavity-containing mutant of T4 lysozyme is stabilized by buried benzene. Nature 355:371–373. doi:10.1038/355371a0 ADSCrossRefGoogle Scholar
  9. Felli IC, Pierattelli R (2015) Spin-state-selective methods in solution- and solid-state biomolecular 13C NMR. Prog Nucl Magn Reson Spectrosc 84:1–13. doi:10.1016/j.pnmrs.2014.10.001 CrossRefGoogle Scholar
  10. Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93:93–141. doi:10.1016/0022-2364(91)90034-Q ADSGoogle Scholar
  11. Gelis I et al (2007) Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131:756–769. doi:10.1016/j.cell.2007.09.039 CrossRefGoogle Scholar
  12. Guenneugues M, Berthault P, Desvaux H (1999) A method for determining B1 field inhomogeneity. Are the biases assumed in heteronuclear relaxation experiments usually underestimated? J Magn Reson 136:118–126. doi:10.1006/jmre.1998.1590 ADSCrossRefGoogle Scholar
  13. Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972. doi:10.1038/nature06522 ADSCrossRefGoogle Scholar
  14. Ishima R, Louis JM, Torchia DA (1999) Transverse 13C relaxation of CHD2 methyl isotopmers to detect slow conformational changes of protein side chains. J Am Chem Soc 121:11589–11590. doi:10.1021/ja992836b CrossRefGoogle Scholar
  15. Janin J, Miller S, Chothia C (1988) Surface, subunit interfaces and interior of oligomeric proteins. J Mol Biol 204:155–164. doi:10.1016/0022-2836(88)90606-7 CrossRefGoogle Scholar
  16. Kay LE, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665. doi:10.1021/ja00052a088 CrossRefGoogle Scholar
  17. Kerfah R, Plevin MJ, Sounier R, Gans P, Boisbouvier J (2015) Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins. Curr Opin Struct Biol 32:113–122. doi:10.1016/j.sbi.2015.03.009 CrossRefGoogle Scholar
  18. Korzhnev DM, Kloiber K, Kay LE (2004) Multiple-quantum relaxation dispersion NMR spectroscopy probing millisecond time-scale dynamics in proteins: theory and application. J Am Chem Soc 126:7320–7329. doi:10.1021/ja049968b CrossRefGoogle Scholar
  19. Levitt MH, Freeman R (1979) NMR population-inversion using a composite pulse. J Magn Reson 33:473–476. doi:10.1016/0022-2364(79)90265-8 ADSGoogle Scholar
  20. Lundstrom P, Vallurupalli P, Religa TL, Dahlquist FW, Kay LE (2007) A single-quantum methyl 13C-relaxation dispersion experiment with improved sensitivity. J Biomol NMR 38:79–88. doi:10.1007/s10858-007-9149-7 CrossRefGoogle Scholar
  21. Luy B (2004) Spin state selectivity and heteronuclear Hartmann-Hahn transfer. J Magn Reson 168:210–216. doi:10.1016/j.jmr.2004.03.005 ADSCrossRefGoogle Scholar
  22. Millet O, Loria JP, Kroenke CD, Pons M, Palmer AG (2000) The static magnetic field dependence of chemical exchange linebroadening defines the NMR chemical shift time scale. J Am Chem Soc 122:2867–2877. doi:10.1021/ja993511y CrossRefGoogle Scholar
  23. Mulder FAA, Skrynnikov NR, Hon B, Dahlquist FW, Kay LE (2001) Measurement of slow (μs-ms) time scale dynamics in protein side chains by 15N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. J Am Chem Soc 123:967–975. doi:10.1021/ja003447g CrossRefGoogle Scholar
  24. Neudecker P et al (2012) Structure of an intermediate state in protein folding and aggregation. Science 336:362–366. doi:10.1126/science.1214203 ADSCrossRefGoogle Scholar
  25. Ottiger M, Delaglio F, Bax A (1998) Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Reson 131:373–378. doi:10.1006/jmre.1998.1361 ADSCrossRefGoogle Scholar
  26. Palmer AG, Kroenke CD, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 339:204–238. doi:10.1016/S0076-6879(01)39315-1 CrossRefGoogle Scholar
  27. Religa TL, Kay LE (2010) Optimal methyl labeling for studies of supra-molecular systems. J Biomol NMR 47:163–169. doi:10.1007/s10858-010-9419-7 CrossRefGoogle Scholar
  28. Rennella E, Huang R, Velyvis A, Kay LE (2015) 13CHD2-CEST NMR spectroscopy provides an avenue for studies of conformational exchange in high molecular weight proteins. J Biomol NMR 63:187–199. doi:10.1007/s10858-015-9974-z CrossRefGoogle Scholar
  29. Rosenzweig R, Kay LE (2014) Bringing dynamic molecular machines into focus by methyl-TROSY NMR. Annu Rev Biochem 83:291–315. doi:10.1146/annurev-biochem-060713-035829 CrossRefGoogle Scholar
  30. Schleucher J, Sattler M, Griesinger C (1993) Coherence selection by gradients without signal attenuation: application to the 3-dimensional HNCO experiment. Angew Chem Int Ed 32:1489–1491. doi:10.1002/anie.199314891 CrossRefGoogle Scholar
  31. Sekhar A, Kay LE (2013) NMR paves the way for atomic level descriptions of sparsely populated, transiently formed biomolecular conformers. Proc Natl Acad Sci USA 110:12867–12874. doi:10.1073/pnas.1305688110 ADSCrossRefGoogle Scholar
  32. Sekhar A, Rumfeldt JAO, Broom HR, Doyle CM, Bouvignies G, Meiering EM, Kay LE (2015) Thermal fluctuations of immature SOD1 lead to separate folding and misfolding pathways. Elife 4:e07296. doi:10.7554/eLife.07296 CrossRefGoogle Scholar
  33. Shaka AJ, Keeler J, Frenkiel T, Freeman R (1983) An improved sequence for broadband decoupling: WALTZ-16. J Magn Reson 52:335–338. doi:10.1016/0022-2364(83)90207-X ADSGoogle Scholar
  34. Shaka AJ, Lee CJ, Pines A (1988) Iterative schemes for bilinear operators: application to spin decoupling. J Magn Reson 77:274–293. doi:10.1016/0022-2364(88)90178-3 ADSGoogle Scholar
  35. Sheppard D, Sprangers R, Tugarinov V (2010) Experimental approaches for NMR studies of side-chain dynamics in high-molecular-weight proteins. Prog Nucl Magn Reson Spectrosc 56:1–45. doi:10.1016/j.pnmrs.2009.07.004 CrossRefGoogle Scholar
  36. Sklenar V, Piotto M, Leppik R, Saudek V (1993) Gradient-tailored water suppression for 1H–15N HSQC experiments optimized to retain full sensitivity. J Magn Reson Ser A 102:241–245. doi:10.1006/jmra.1993.1098 ADSCrossRefGoogle Scholar
  37. Skrynnikov NR, Dahlquist FW, Kay LE (2002) Reconstructing NMR spectra of “invisible” excited protein states using HSQC and HMQC experiments. J Am Chem Soc 124:12352–12360. doi:10.1021/ja0207089 CrossRefGoogle Scholar
  38. Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20 S proteasome by NMR. Nature 445:618–622. doi:10.1038/nature05512 CrossRefGoogle Scholar
  39. Tugarinov V, Kay LE (2005) Methyl groups as probes of structure and dynamics in NMR studies of high-molecular-weight proteins. Chembiochem 6:1567–1577. doi:10.1002/cbic.200500110 CrossRefGoogle Scholar
  40. Tugarinov V, Kay LE (2007) Separating degenerate 1H transitions in methyl group probes for single-quantum 1H-CPMG relaxation dispersion NMR spectroscopy. J Am Chem Soc 129:9514–9521. doi:10.1021/ja0726456 CrossRefGoogle Scholar
  41. Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced 1H–13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428. doi:10.1021/ja030153x CrossRefGoogle Scholar
  42. Vallurupalli P, Bouvignies G, Kay LE (2012) Studying “invisible” excited protein states in slow exchange with a major state conformation. J Am Chem Soc 134:8148–8161. doi:10.1021/ja3001419 CrossRefGoogle Scholar
  43. Wuthrich K (1986) NMR of proteins and nucleic acids. Wiley, HobokenGoogle Scholar
  44. Yang DW, Kay LE (1999) Improved 1HN-detected triple resonance TROSY-based experiments. J Biomol NMR 13:3–10. doi:10.1023/A:1008329230975 CrossRefGoogle Scholar
  45. Yang DW, Nagayama K (1996) A sensitivity-enhanced method for measuring heteronuclear long-range coupling constants from the displacement of signals in two 1D subspectra. J Magn Reson Ser A 118:117–121. doi:10.1006/jmra.1996.0017 ADSCrossRefGoogle Scholar
  46. Yuwen T, Vallurupalli P, Kay LE (2016) Enhancing the sensitivity of CPMG relaxation dispersion to conformational exchange processes by multiple-quantum spectroscopy. Angew Chem Int Ed 55:11490–11494. doi:10.1002/anie.201605843 CrossRefGoogle Scholar
  47. Yuwen T, Sekhar A, Kay LE (2017) Separating dipolar and chemical exchange magnetization transfer processes in 1H-CEST. Angew Chem Int Ed 56:6122–6125.doi:10.1002/anie.201610759 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Departments of Molecular Genetics, Biochemistry and ChemistryUniversity of TorontoTorontoCanada
  2. 2.Program in Molecular Structure and FunctionHospital for Sick ChildrenTorontoCanada

Personalised recommendations