Advertisement

Journal of Biomolecular NMR

, Volume 68, Issue 1, pp 41–52 | Cite as

F 1 F 2-selective NMR spectroscopy

  • Erik Walinda
  • Daichi Morimoto
  • Masahiro Shirakawa
  • Kenji SugaseEmail author
Article

Abstract

Fourier transform NMR spectroscopy has provided unprecedented insight into the structure, interaction and dynamic motion of proteins and nucleic acids. Conventional biomolecular NMR relies on the acquisition of three-dimensional and four-dimensional (4D) data matrices to establish correlations between chemical shifts in the frequency domains F 1, F 2, F 3 and F 1, F 2, F 3, F 4 respectively. While rich in information, these datasets require a substantial amount of acquisition time, are visually highly unintuitive, require expert knowledge to process, and sample dark and bright regions of the frequency domains equally. Here, we present an alternative approach to obtain multidimensional chemical shift correlations for biomolecules. This strategy focuses on one narrow frequency range, F 1 F 2, at a time and records the resulting F 3 F 4 correlation spectrum by two-dimensional NMR. As a result, only regions of the frequency domain that contain signals in F 1 F 2 (“bright regions”) are sampled. F 1 F 2 selection is achieved by Hartmann–Hahn cross-polarization using weak radio frequency fields. This approach reveals information equivalent to that of a conventional 4D experiment, while the dimensional reduction may shorten the total acquisition time and simplifies spectral processing, interpretation and comparative analysis. Potential applicability of the F 1 F 2-selective approach is illustrated by de novo assignment, structural and dynamics studies of ubiquitin and fatty-acid binding protein 4 (FABP4). Further extension of this concept may spawn new selective NMR experiments to aid studies of site-specific structural dynamics, protein–protein interactions and allosteric modulation of protein structure.

Keywords

Frequency selection Dimensional reduction Cross-polarization Selective excitation Nuclear overhauser effect spectroscopy Relaxation dispersion 

Abbreviations

CP

Cross-polarization

FID

Free induction decay

FT

Fourier transform

HSQC

Heteronuclear single-quantum coherence

NOE

Nuclear overhauser effect

NUS

Non-uniform sampling

PEP

Preservation of equivalent pathways

Supplementary material

10858_2017_113_MOESM1_ESM.docx (881 kb)
Supplementary material 1 (DOCX 880 KB)

References

  1. Adams PD, Afonine PV, Bunkóczi G et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Cryst D 66:213–221CrossRefGoogle Scholar
  2. Cavanagh J, Fairbrother WJ, Palmer AG III, Skelton NJ (1995) Protein NMR spectroscopy: principles and practice. Academic Press, New YorkGoogle Scholar
  3. Chiarparin E, Pelupessy P, Bodenhausen G (1998) Selective cross-polarization in solution state NMR. Mol Phys 95:759–767ADSCrossRefGoogle Scholar
  4. De Vries SJ, van Dijk M, Bonvin AM (2010) The HADDOCK web server for data-driven biomolecular docking. Nature Protoc 5:883–897CrossRefGoogle Scholar
  5. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  6. Freeman R, Kupce E (2008) Fast multidimensional NMR by hadamard spectroscopy. eMagRes, pp 1–11. http://onlinelibrary.wiley.com/doi/10.1002/9780470034590.emrstm1035/full
  7. Güntert P (2004) Automated NMR structure calculation with CYANA. Protein NMR techniques. Humana Press, New JerseyGoogle Scholar
  8. Gutmanas A et al (2015) NMR exchange format: a unified and open standard for representation of NMR restraint data. Nat Struct Mol Biol 22:433–434CrossRefGoogle Scholar
  9. Hansen AL, Al-Hashimi HM (2007) Dynamics of large elongated RNA by NMR carbon relaxation. J Am Chem Soc 129:16072–16082CrossRefGoogle Scholar
  10. Hansen AL, Nikolova EN, Casiano-Negroni A, Al-Hashimi HM (2009) Extending the range of microsecond-to-millisecond chemical exchange detected in labeled and unlabeled nucleic acids by selective carbon R1ρ NMR spectroscopy. J Am Chem Soc 131:3818–3819CrossRefGoogle Scholar
  11. Hartmann S, Hahn E (1962) Nuclear double resonance in the rotating frame. Phys Rev 128:2042ADSCrossRefzbMATHGoogle Scholar
  12. Hiller S, Ibraghimov I, Wagner G, Orekhov VY (2009) Coupled decomposition of four-dimensional NOESY spectra. J Am Chem Soc 131:12970–12978CrossRefGoogle Scholar
  13. Hyberts SG, Milbradt AG, Wagner AB, Arthanari H, Wagner G (2012) Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling. J Biomol NMR 52:315–327CrossRefGoogle Scholar
  14. Ikegami T, Sato S, Wälchli M, Kyogoku Y, Shirakawa M (1997) An efficient HN (CA) NH pulse scheme for triple-resonance 4D correlation of sequential amide protons and nitrogens-15 in deuterated proteins. J Magn Reson 124:214–217ADSCrossRefGoogle Scholar
  15. Kazimierczuk K, Orekhov VY (2011) Accelerated NMR spectroscopy by using compressed sensing. Angew Chem Int Ed 50:5556–5559CrossRefGoogle Scholar
  16. Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125:1385–1393CrossRefGoogle Scholar
  17. Korzhnev DM, Orekhov VY, Kay LE (2005) Off-resonance R1ρ NMR studies of exchange dynamics in proteins with low spin-lock fields: an application to a Fyn SH3 domain. J Am Chem Soc 127:713–721CrossRefGoogle Scholar
  18. Kupče E, Freeman R (2003a) Projection-reconstruction of three-dimensional NMR spectra. J Am Chem Soc 125:13958–13959CrossRefGoogle Scholar
  19. Kupče E, Freeman R (2003b) Fast multi-dimensional Hadamard spectroscopy. J Magn Reson 163:56–63ADSCrossRefGoogle Scholar
  20. Lange OF et al (2012) Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. Proc Natl Acad Sci USA 109:10873–10878ADSCrossRefGoogle Scholar
  21. Massi F, Johnson E, Wang C, Rance M, Palmer AG (2004) NMR R rotating-frame relaxation with weak radio frequency fields. J Am Chem Soc 126:2247–2256CrossRefGoogle Scholar
  22. Massi F, Grey MJ, Palmer AG (2005) Microsecond timescale backbone conformational dynamics in ubiquitin studied with NMR R relaxation experiments. Protein Sci 14:735–742CrossRefGoogle Scholar
  23. Matsuki Y, Eddy MT, Herzfeld J (2009) Spectroscopy by integration of frequency and time domain information for fast acquisition of high-resolution dark spectra. J Am Chem Soc 131:4648–4656CrossRefGoogle Scholar
  24. Miloushev VZ, Palmer AG (2005) R relaxation for two-site chemical exchange: General approximations and some exact solutions. J Magn Reson 177:221–227ADSCrossRefGoogle Scholar
  25. Morimoto D, Walinda E, Fukada, H, Sugase K, Shirakawa M (2016) Ubiquitylation directly induces fold destabilization of proteins. Sci Rep 6:39453ADSCrossRefGoogle Scholar
  26. Orekhov VY, Jaravine VA (2011) Analysis of non-uniformly sampled spectra with multi-dimensional decomposition. Prog Nucl Magn Reson Spectrosc 59:271–292CrossRefGoogle Scholar
  27. Palmer AG, Cavanagh J, Wright PE, Rance M (1991) Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. J Magn Reson 93:151–170ADSGoogle Scholar
  28. Palmer AG, Kroenke CC, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 339:204–238CrossRefGoogle Scholar
  29. Pelupessy P, Chiarparin E (2000) Hartmann–Hahn polarization transfer in liquids: an ideal tool for selective experiments. Concepts Magn Reson 12:103–124CrossRefGoogle Scholar
  30. Pelupessy P, Chiarparin E, Bodenhausen G (1999) Excitation of selected proton signals in NMR of isotopically labeled macromolecules. J Magn Reson 138:178–181ADSCrossRefGoogle Scholar
  31. Rohl CA, Strauss CE, Misura KM, Baker D (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93CrossRefGoogle Scholar
  32. Saio T, Guan X, Rossi P, Economou A, Kalodimos CG (2014) Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344:12504941–125049411CrossRefGoogle Scholar
  33. Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution. Prog Nucl Magn Reson Spectrosc 34:93–158CrossRefGoogle Scholar
  34. Schmidt E, Güntert P (2012) A new algorithm for reliable and general NMR resonance assignment. J Am Chem Soc 134:12817–12829CrossRefGoogle Scholar
  35. Schubert M, Smalla M, Schmieder P, Oschkinat H (1999) MUSIC in triple-resonance experiments: amino acid type-selective 1H–15N correlations. J Magn Reson 141:34–43ADSCrossRefGoogle Scholar
  36. Schubert M, Ball LJ, Oschkinat H, Schmieder P (2000) Bridging the gap: a set of selective 1H–15N-correlations to link sequential neighbors of prolines. J Biomol NMR 17:331–335CrossRefGoogle Scholar
  37. Schubert M, Oschkinat H, Schmieder P (2001a) Amino acid type-selective backbone 1H–15N-correlations for Arg and Lys. J Biomol NMR 20:379–384CrossRefGoogle Scholar
  38. Schubert M, Oschkinat H, Schmieder P (2001b) MUSIC and aromatic residues: amino acid type-selective 1H–15N correlations. J Magn Reson 153:186–192ADSCrossRefGoogle Scholar
  39. Schubert M, Oschkinat H, Schmieder P (2001c) MUSIC, selective pulses, and tuned delays: amino acid type-selective 1H–15N correlations, II. J Magn Reson 148:61–72ADSCrossRefGoogle Scholar
  40. Schubert M, Labudde D, Leitner D, Oschkinat H, Schmieder P (2005) A modified strategy for sequence specific assignment of protein NMR spectra based on amino acid type selective experiments. J Biomol NMR 31:115–128CrossRefGoogle Scholar
  41. Shi J, Pelton GP, Cho HS, Wemmer DE (2004) Protein signal assignments using specific labeling and cell-free synthesis. J Biomol NMR 28:235–247CrossRefGoogle Scholar
  42. Sugase K, Konuma T, Lansing JC, Wright PE (2013) Fast and accurate fitting of relaxation dispersion data using the flexible software package GLOVE. J Biomol NMR 56:275–283CrossRefGoogle Scholar
  43. Takahashi H, Nakanishi T, Kami K, Arata Y, Shimada I (2000) A novel NMR method for determining the interfaces of large protein–protein complexes. Nat Struct Mol Biol 7:220–223CrossRefGoogle Scholar
  44. Vögeli B et al (2009) Exact distances and internal dynamics of perdeuterated ubiquitin from NOE buildups. J Am Chem Soc 131:17215–17225CrossRefGoogle Scholar
  45. Vranken WF et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696CrossRefGoogle Scholar
  46. Walinda E, Morimoto D, Sugase K, Konuma T, Tochio H, Shirakawa M (2014) Solution structure of the ubiquitin-associated (UBA) domain of human autophagy receptor NBR1 and its interaction with ubiquitin and polyubiquitin. J Biol Chem 289:13890–13902CrossRefGoogle Scholar
  47. Walinda E, Morimoto D, Nishizawa M, Shirakawa M, Sugase K (2016) Efficient identification and analysis of chemical exchange in biomolecules by R relaxation dispersion with amaterasu. Bioinformatics 32:2539CrossRefGoogle Scholar
  48. Walinda E, Morimoto D, Shirakawa M, Sugase K (2017) Practical considerations for investigation of protein conformational dynamics by 15N R relaxation dispersion. J Biomol NMR. doi: 10.1007/s10858-017-0097-6 Google Scholar
  49. Weisemann R, Rüterjans H, Bermel W (1993) 3D triple-resonance NMR techniques for the sequential assignment of NH and 15N resonances in 15N-and 13C-labelled proteins. J Biomol NMR 3:113–120CrossRefGoogle Scholar
  50. Williamson MP (2013) Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc 73:1–16CrossRefGoogle Scholar
  51. Zawadzka-Kazimierczuk A, Kazimierczuk K, Koźmiński W (2010) A set of 4D NMR experiments of enhanced resolution for easy resonance assignment in proteins. J Magn Reson 202:109–116ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Erik Walinda
    • 1
  • Daichi Morimoto
    • 2
  • Masahiro Shirakawa
    • 2
  • Kenji Sugase
    • 2
    Email author
  1. 1.Department of Molecular and Cellular Physiology, Graduate School of MedicineKyoto UniversityKyotoJapan
  2. 2.Department of Molecular Engineering, Graduate School of EngineeringKyoto UniversityKyotoJapan

Personalised recommendations