Advertisement

Journal of Biomolecular NMR

, Volume 67, Issue 3, pp 165–178 | Cite as

On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR

  • Abhishek Mandal
  • Jennifer C. Boatz
  • Travis B. Wheeler
  • Patrick C. A. van der Wel
Article

Abstract

A number of recent advances in the field of magic-angle-spinning (MAS) solid-state NMR have enabled its application to a range of biological systems of ever increasing complexity. To retain biological relevance, these samples are increasingly studied in a hydrated state. At the same time, experimental feasibility requires the sample preparation process to attain a high sample concentration within the final MAS rotor. We discuss these considerations, and how they have led to a number of different approaches to MAS NMR sample preparation. We describe our experience of how custom-made (or commercially available) ultracentrifugal devices can facilitate a simple, fast and reliable sample preparation process. A number of groups have since adopted such tools, in some cases to prepare samples for sedimentation-style MAS NMR experiments. Here we argue for a more widespread adoption of their use for routine MAS NMR sample preparation.

Keywords

MAS NMR Ultracentrifugation Sample packing Hydration Sedimentation 

Notes

Acknowledgements

We thank Mike Delk for his help with the NMR experiments. Funding support was from the University of Pittsburgh and the National Institutes of Health grants R01GM112678 and R01GM113908 (P.v.d.W.), and T32 GM088119 (J.C.B.).

Author contributions

TW and PvdW designed the packing tool. TW fabricated the packing tool. AM prepared samples. AM packed samples. AM and JCB performed MAS NMR experiments. JCB performed transmission electron microscopy measurements. AM and PvdW wrote the manuscript. All authors have read and edited the manuscript.

Supplementary material

10858_2017_89_MOESM1_ESM.pdf (1.8 mb)
Supplementary material 1 (PDF 1881 KB)

References

  1. Abe M, Niibayashi R, Koubori S, Moriyama I, Miyoshi H (2011) Molecular mechanisms for the induction of peroxidase activity of the cytochrome c-cardiolipin complex. Biochemistry 50(39):8383–8391CrossRefGoogle Scholar
  2. Andreas LB, Le Marchand T, Jaudzems K, Pintacuda G (2015) High-resolution proton-detected NMR of proteins at very fast MAS. J Magn Reson 253:36–49ADSCrossRefGoogle Scholar
  3. Andreas LB, Jaudzems K, Stanek J, Lalli D, Bertarello A, Le Marchand T, Cala-De Paepe D, Kotelovica S, Akopjana I, Knott B, Wegner S, Engelke F, Lesage A, Emsley L, Tars K, Herrmann T, Pintacuda G (2016) Structure of fully protonated proteins by proton-detected magic-angle spinning NMR. Proc Natl Acad Sci USA 113(33):9187–9192CrossRefGoogle Scholar
  4. Antzutkin ON, Balbach JJ, Leapman RD, Rizzo NW, Reed J, Tycko R (2000) Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of β-sheets in Alzheimer’s β-amyloid fibrils. Proc Natl Acad Sci USA 97(24):13045–13050ADSCrossRefGoogle Scholar
  5. Bajaj VS, Van der Wel PCA, Griffin RG (2009) Observation of a low-temperature, dynamically driven structural transition in a polypeptide by solid-state NMR spectroscopy. J Am Chem Soc 131(1):118–128CrossRefGoogle Scholar
  6. Ball P (2008) Water as an active constituent in cell biology. Chem Rev 108(1):74–108CrossRefGoogle Scholar
  7. Bell DJ, Heywood-Waddington D, Hoare M, Dunnill P (1982) The density of protein precipitates and its effect on centrifugal sedimentation. Biotechnol Bioeng 24(1):127–141CrossRefGoogle Scholar
  8. Bertini I, Luchinat C, Parigi G, Ravera E, Reif B, Turano P (2011) Solid-state NMR of proteins sedimented by ultracentrifugation. Proc Natl Acad Sci USA 108(26):10396–10399ADSCrossRefGoogle Scholar
  9. Bertini I, Engelke F, Gonnelli L, Knott B, Luchinat C, Osen D, Ravera E (2012) On the use of ultracentrifugal devices for sedimented solute NMR. J Biomol NMR 54(2):123–127CrossRefGoogle Scholar
  10. Bertini I, Luchinat C, Parigi G, Ravera E (2013) SedNMR: on the edge between solution and solid-state NMR. Acc Chem Res 46(9):2059–2069CrossRefGoogle Scholar
  11. Böckmann A, Meier B (2014) Prions. Prion 4(2):72–79CrossRefGoogle Scholar
  12. Böckmann A, Gardiennet C, Verel R, Hunkeler A, Loquet A, Pintacuda G, Emsley L, Meier BH, Lesage A (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45(3):319–327CrossRefGoogle Scholar
  13. Bryant G, Koster KL, Wolfe J (2001) Membrane behaviour in seeds and other systems at low water content: the various effects of solutes. Seed Sci Res 11:17–25CrossRefGoogle Scholar
  14. Cai H, Chen Y, Cui X, Cai S, Chen Z (2014) High-resolution 1H NMR spectroscopy of fish muscle, eggs and small whole fish via Hadamard-encoded intermolecular multiple-quantum coherence. PLoS ONE 9(1):e86422ADSCrossRefGoogle Scholar
  15. Chimon S, Ishii Y (2005) Capturing intermediate structures of Alzheimer’s beta-amyloid, Abeta(1–40), by solid-state NMR spectroscopy. J Am Chem Soc 127(39):13472–13473CrossRefGoogle Scholar
  16. Chimon S, Shaibat MA, Jones CR, Calero DC, Aizezi B, Ishii Y (2007) Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer’s β-amyloid. Nat Struct Mol Biol 14(12):1157–1164CrossRefGoogle Scholar
  17. Comellas G, Lemkau LR, Nieuwkoop AJ, Kloepper KD, Ladror DT, Ebisu R, Woods WS, Lipton AS, George JM, Rienstra CM (2011) Structured regions of alpha-synuclein fibrils include the early-onset parkinson’s disease mutation sites. J Mol Biol 411(4):881–895CrossRefGoogle Scholar
  18. Das N, Murray DT, Cross TA (2013) Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples. Nat Protoc 8(11):2256–2270CrossRefGoogle Scholar
  19. Demers J-P, Chevelkov V, Lange A (2011) Progress in correlation spectroscopy at ultra-fast magic-angle spinning: basic building blocks and complex experiments for the study of protein structure and dynamics. Solid State Nucl Magn Reson 40(3):101–113CrossRefGoogle Scholar
  20. Demers J-P, Habenstein B, Loquet A, Vasa SK, Giller K, Becker S, Baker D, Lange A, Sgourakis NG (2014) High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy. Nat Commun 5:1–12CrossRefGoogle Scholar
  21. Dillmann B, Elbayed K, Zeiger H, Weingertner M-C, Piotto M, Engelke F (2007) A novel low-E field coil to minimize heating of biological samples in solid-state multinuclear NMR experiments. J Magn Reson 187(1):10–18ADSCrossRefGoogle Scholar
  22. Ferella L, Luchinat C, Ravera E, Rosato A (2013) SedNMR: a web tool for optimizing sedimentation of macromolecular solutes for SSNMR. J Biomol NMR 57(4):319–326CrossRefGoogle Scholar
  23. Fragai M, Luchinat C, Parigi G, Ravera E (2013) Practical considerations over spectral quality in solid state NMR spectroscopy of soluble proteins. J Biomol NMR 57(2):155–166CrossRefGoogle Scholar
  24. Gardiennet C, Schütz AK, Hunkeler A, Kunert B, Terradot L, Böckmann A, Meier BH (2012) A sedimented sample of a 59 kDa dodecameric helicase yields high-resolution solid-state NMR spectra. Angew Chem Int Ed 51(31):7855–7858CrossRefGoogle Scholar
  25. Gawrisch K, Gaede HC, Mihailescu M, White SH (2007) Hydration of POPC bilayers studied by 1H-PFG-MAS-NOESY and neutron diffraction. Eur Biophys J 36(4–5):281–291CrossRefGoogle Scholar
  26. Gelis I, Vitzthum V, Dhimole N, Caporini MA, Schedlbauer A, Carnevale D, Connell SR, Fucini P, Bodenhausen G (2013) Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology. J Biomol NMR 56(2):85–93CrossRefGoogle Scholar
  27. Goldbourt A (2013) Biomolecular magic-angle spinning solid-state NMR: recent methods and applications. Curr Opin Biotechnol 24(4):705–715CrossRefGoogle Scholar
  28. Gregory RB, Gangoda M, Gilpin RK, Su W (1993) The influence of hydration on the conformation of bovine serum albumin studied by solid-state 13C-NMR spectroscopy. Biopolymers 33(12):1871–1876CrossRefGoogle Scholar
  29. Han Y, Ahn J, Concel J, Byeon I-JL, Gronenborn AM, Yang J, Polenova T (2010) Solid-state NMR studies of HIV-1 capsid protein assemblies. J Am Chem Soc 132(6):1976–1987CrossRefGoogle Scholar
  30. Higman VA, Flinders J, Hiller M, Jehle S, Markovic S, Fiedler S, van Rossum B-J, Oschkinat H (2009) Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively 13C-labelled proteins. J Biomol NMR 44(4):245–260CrossRefGoogle Scholar
  31. Hisao GS, Harland MA, Brown RA, Berthold DA, Wilson TE, Rienstra CM (2016) An efficient method and device for transfer of semisolid materials into solid-state NMR spectroscopy rotors. J Magn Reson 265:172–176ADSCrossRefGoogle Scholar
  32. Hoop CL, Sivanandam VN, Kodali R, Srnec MN, Van der Wel PCA (2012) Structural characterization of the caveolin scaffolding domain in association with cholesterol-rich membranes. Biochemistry 51(1):90–99CrossRefGoogle Scholar
  33. Hoop CL, Lin H-K, Kar K, Hou Z, Poirier MA, Wetzel R, Van der Wel PCA (2014) Polyglutamine amyloid core boundaries and flanking domain dynamics in huntingtin fragment fibrils determined by solid-state nuclear magnetic resonance. Biochemistry 53(42):6653–6666CrossRefGoogle Scholar
  34. Hoop CL, Lin H-K, Kar K, Magyarfalvi G, Lamley JM, Boatz JC, Mandal A, Lewandowski JR, Wetzel R, Van der Wel PCA (2016) Huntingtin exon 1 fibrils feature an interdigitated β-hairpin-based polyglutamine core. Proc Natl Acad Sci USA 113(6):1546–1551ADSCrossRefGoogle Scholar
  35. Igumenova TI, McDermott AE, Zilm KW, Martin RW, Paulson EK, Wand AJ (2004) Assignments of carbon NMR resonances for microcrystalline ubiquitin. J Am Chem Soc 126(21):6720–6727CrossRefGoogle Scholar
  36. Jakeman DL, Mitchell DJ, Shuttleworth WA, Evans JN (1998) Effects of sample preparation conditions on biomolecular solid-state NMR lineshapes. J Biomol NMR 12(3):417–421CrossRefGoogle Scholar
  37. Kennedy SD, Bryant RG (1990) Structural effects of hydration: studies of lysozyme by 13C solids NMR. Biopolymers 29(14):1801–1806CrossRefGoogle Scholar
  38. Khodadadi S, Roh JH, Kisliuk A, Mamontov E, Tyagi M, Woodson SA, Briber RM, Sokolov AP (2010) Dynamics of biological macromolecules: not a simple slaving by hydration water. Biophys J 98(7):1321–1326CrossRefGoogle Scholar
  39. Kloepper KD, Hartman KL, Ladror DT, Rienstra CM (2007) Solid-state NMR spectroscopy reveals that water is nonessential to the core structure of alpha-synuclein fibrils. J Phys Chem B 111(47):13353–13356CrossRefGoogle Scholar
  40. Knight MJ, Felli IC, Pierattelli R, Emsley L, Pintacuda G (2013) Magic angle spinning NMR of paramagnetic proteins. Acc Chem Res 46(9):2108–2116CrossRefGoogle Scholar
  41. Krushelnitsky A, Gogolev Y, Golbik R, Dahlquist F, Reichert D (2006) Comparison of the internal dynamics of globular proteins in the microcrystalline and rehydrated lyophilized states. Biochim Biophys Acta Proteins Proteomics 1764(10):1639–1645CrossRefGoogle Scholar
  42. Kunert B, Gardiennet C, Lacabanne D, Calles-Garcia D, Falson P, Jault J-M, Meier BH, Penin F, Böckmann A (2014) Efficient and stable reconstitution of the ABC transporter BmrA for solid-state NMR studies. Front Mol Biosci 1:5CrossRefGoogle Scholar
  43. Lamley JM, Iuga D, Öster C, Sass H-J, Rogowski M, Oss A, Past J, Reinhold A, Grzesiek S, Samoson A, Lewandowski JR (2014) Solid-state NMR of a protein in a precipitated complex with a full-length antibody. J Am Chem Soc 136(48):16800–16806CrossRefGoogle Scholar
  44. LeBarron J, London E (2016) Effect of lipid composition and amino acid sequence upon transmembrane peptide-accelerated lipid transleaflet diffusion (flip-flop). Biochim Biophys Acta 1858(8):1812–1820CrossRefGoogle Scholar
  45. Li J, Van der Wel PCA (2013) Spinning-rate encoded chemical shift correlations from rotational resonance solid-state NMR experiments. J Magn Reson 230:117–124ADSCrossRefGoogle Scholar
  46. Li J, Hoop CL, Kodali R, Sivanandam VN, Van der Wel PCA (2011) Amyloid-like fibrils from a domain-swapping protein feature a parallel, in-register conformation without native-like interactions. J Biol Chem 286(33):28988–28995CrossRefGoogle Scholar
  47. Linden AH, Franks WT, Akbey Ü, Lange S, van Rossum B-J, Oschkinat H (2011) Cryogenic temperature effects and resolution upon slow cooling of protein preparations in solid state NMR. J Biomol NMR 51(3):283–292CrossRefGoogle Scholar
  48. Loquet A, Giller K, Becker S, Lange A (2010) Supramolecular interactions probed by 13C–13C solid-state NMR spectroscopy. J Am Chem Soc 132(43):15164–15166CrossRefGoogle Scholar
  49. Loquet A, Habenstein B, Lange A (2013) Structural investigations of molecular machines by solid-state NMR. Acc Chem Res 46(9):2070–2079CrossRefGoogle Scholar
  50. Luchinat C, Parigi G, Ravera E (2013) Water and protein dynamics in sedimented systems: a relaxometric investigation. ChemPhysChem 14(13):3156–3161CrossRefGoogle Scholar
  51. Mainz A, Jehle S, van Rossum BJ, Oschkinat H, Reif B (2009) Large protein complexes with extreme rotational correlation times investigated in solution by magic-angle-spinning NMR spectroscopy. J Am Chem Soc 131(44):15968–15969CrossRefGoogle Scholar
  52. Mandal A, Van der Wel PCA (2016) MAS 1H NMR probes freezing point depression of water and liquid-gel phase transitions in liposomes. Biophys J 111(9):1965–1973CrossRefGoogle Scholar
  53. Mandal A, Hoop CL, DeLucia M, Kodali R, Kagan VE, Ahn J, Van der Wel PCA (2015) Structural changes and proapoptotic peroxidase activity of cardiolipin—bound mitochondrial cytochrome c. Biophys J 109(9):1873–1884CrossRefGoogle Scholar
  54. Martin RW, Zilm KW (2003) Preparation of protein nanocrystals and their characterization by solid state NMR. J Magn Reson 165(1):162–174ADSCrossRefGoogle Scholar
  55. McNeill SA, Gor’kov PL, Shetty K, Brey WW, Long JR (2009) A low-E magic angle spinning probe for biological solid state NMR at 750 MHz. J Magn Reson 197(2):135–144ADSCrossRefGoogle Scholar
  56. Mehler M, Eckert CE, Busche A, Kulhei J, Michaelis J, Becker-Baldus J, Wachtveitl J, Dötsch V, Glaubitz C (2015) Assembling a correctly folded and functional heptahelical membrane protein by protein trans-splicing. J Biol Chem 290(46):27712–27722Google Scholar
  57. Merg AD, Boatz JC, Mandal A, Zhao G, Mokashi-Punekar S, Liu C, Wang X, Zhang P, Van der Wel PCA, Rosi NL (2016) Peptide-directed assembly of single-helical gold nanoparticle superstructures exhibiting intense chiroptical activity. J Am Chem Soc 138(41):13655–13663CrossRefGoogle Scholar
  58. New RRC (1994) Influence of liposome characteristics on their properties and fate. In: Philippot JR, Schuber F (eds) Liposomes as tools in basic research and industry. CRC Press, Boca Raton, FL, pp 3–20Google Scholar
  59. Pauli J, van Rossum B, Förster H, de Groot HJM, Oschkinat H (2000) Sample optimization and identification of signal patterns of amino acid side chains in 2D RFDR spectra of the α-spectrin SH3 domain. J Magn Reson Ser A 143(2):411–416ADSCrossRefGoogle Scholar
  60. Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99(26):16742–16747ADSCrossRefGoogle Scholar
  61. Pöppler A-C, Demers J-P, Malon M, Singh AP, Roesky HW, Nishiyama Y, Lange A (2016) Ultrafast magic-angle spinning: benefits for the acquisition of ultrawide-line NMR spectra of heavy spin-1/2 nuclei. ChemPhysChem 17(6):812–816CrossRefGoogle Scholar
  62. Porcelli F, Ramamoorthy A, Barany G, Veglia G (2013) On the role of NMR spectroscopy for characterization of antimicrobial peptides. Methods Mol Biol 1063:159–180CrossRefGoogle Scholar
  63. Quinn CM, Lu M, Suiter CL, Hou G, Zhang H, Polenova T (2015) Magic angle spinning NMR of viruses. Prog Nucl Magn Reson Spectrosc 86–87:21–40CrossRefGoogle Scholar
  64. Ravera E (2015) The bigger they are, the harder they fall: a topical review on sedimented solutes for solid-state NMR. Concepts Magn Reson 43 (6):209–227.CrossRefGoogle Scholar
  65. Ravera E, Schubeis T, Martelli T, Fragai M, Parigi G, Luchinat C (2015) NMR of sedimented, fibrillized, silica-entrapped and microcrystalline (metallo)proteins. J Magn Reson 253:60–70ADSCrossRefGoogle Scholar
  66. Ravera E, Ciambellotti S, Cerofolini L, Martelli T, Kozyreva T, Bernacchioni C, Giuntini S, Fragai M, Turano P, Luchinat C (2016) Solid-state NMR of PEGylated proteins. Angew Chem 128 (7):2492–2495.CrossRefGoogle Scholar
  67. Renault M, Shintu L, Piotto M, Caldarelli S (2013) Slow-spinning low-sideband HR-MAS NMR spectroscopy: delicate analysis of biological samples. Sci Rep 3:3349ADSCrossRefGoogle Scholar
  68. Sarkar R, Mainz A, Busi B, Barbet-Massin E, Kranz M, Hofmann T, Reif B (2016) Immobilization of soluble protein complexes in MAS solid-state NMR: sedimentation versus viscosity. Solid State Nucl Magn Reson 76–77:7–14CrossRefGoogle Scholar
  69. Scalise M, Pochini L, Giangregorio N, Tonazzi A, Indiveri C (2013) Proteoliposomes as tool for assaying membrane transporter functions and interactions with xenobiotics. Pharmaceutics 5(3):472–497CrossRefGoogle Scholar
  70. Schirò G, Fichou Y, Gallat F-X, Wood K, Gabel F, Moulin M, Härtlein M, Heyden M, Colletier J-P, Orecchini A, Paciaroni A, Wuttke J, Tobias DJ, Weik M (2015) Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins. Nat Commun 6:6490ADSCrossRefGoogle Scholar
  71. Schmidt HLF, Shah GJ, Sperling LJ, Rienstra CM (2010) NMR determination of protein pK(a) values in the solid state. J Phys Chem Lett 1(10):1623–1628CrossRefGoogle Scholar
  72. Schubeis T, Nagaraj M, Ritter C (2017) Segmental isotope labeling of insoluble proteins for solid-state NMR by protein trans-splicing. Methods Mol Biol 1495(10):147–160CrossRefGoogle Scholar
  73. Seidel K, Etzkorn M, Heise H, Becker S, Baldus M (2005) High-Resolution Solid-State NMR Studies on Uniformly [13C15N-Labeled Ubiquitin. ChemBioChem 6(9):1638–1647CrossRefGoogle Scholar
  74. Sharma A, Sharma US (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154(2):123–140CrossRefGoogle Scholar
  75. Sharpe S, Yau W-M, Tycko R (2006) Structure and dynamics of the HIV-1 Vpu transmembrane domain revealed by solid-state NMR with magic-angle spinning. Biochemistry 45(3):918–933CrossRefGoogle Scholar
  76. Siemer AB, Huang K-Y, McDermott AE (2012) Protein linewidth and solvent dynamics in frozen solution NMR. PLoS ONE 7(10):e47242ADSCrossRefGoogle Scholar
  77. Sivanandam VN, Jayaraman M, Hoop CL, Kodali R, Wetzel R, Van der Wel PCA (2011) The aggregation-enhancing huntingtin N-terminus is helical in amyloid fibrils. J Am Chem Soc 133(12):4558–4566CrossRefGoogle Scholar
  78. Stepanyants N, Macdonald PJ, Francy CA, Mears JA, Qi X, Ramachandran R (2015) Cardiolipin’s propensity for phase transition and its reorganization by dynamin-related protein 1 form a basis for mitochondrial membrane fission. Mol Biol Cell 26(17):3104–3116CrossRefGoogle Scholar
  79. Straus SK (2004) Recent developments in solid-state magic-angle spinning, nuclear magnetic resonance of fully and significantly isotopically labelled peptides and proteins. Philos Trans R Soc Lond, B, Biol Sci 359 (1446):997–1008CrossRefGoogle Scholar
  80. Tang H, Belton PS, Ng A, Ryden P (1999) 13C MAS NMR Studies of the effects of hydration on the cell walls of potatoes and chinese water chestnuts. J Agric Food Chem 47(2):510–517CrossRefGoogle Scholar
  81. Tortorella D, London E (1994) Method for efficient pelleting of small unilamellar model membrane vesicles. Anal Biochem 217(2):176–180CrossRefGoogle Scholar
  82. Tortorella D, Ulbrandt ND, London E (1993) Simple centrifugation method for efficient pelleting of both small and large unilamellar vesicles that allows convenient measurement of protein binding. Biochemistry 32(35):9181–9188CrossRefGoogle Scholar
  83. Tuttle MD, Courtney JM, Barclay AM, Rienstra CM (2016) Preparation of amyloid fibrils for magic-angle spinning solid-state NMR spectroscopy. Methods Mol Biol 1345:173–183CrossRefGoogle Scholar
  84. Ulrich AS, Watts A (1994) Molecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMR. Biophys J 66(5):1441–1449CrossRefGoogle Scholar
  85. Van Melckebeke H, Schanda P, Gath J, Wasmer C, Verel R, Lange A, Meier BH, Böckmann A (2011) Probing water accessibility in HET-s(218–289) amyloid fibrils by solid-state NMR. J Mol Biol 405(3):765–772CrossRefGoogle Scholar
  86. Van der Wel PCA, Lewandowski JR, Griffin RG (2007) Solid-state NMR study of amyloid nanocrystals and fibrils formed by the peptide GNNQQNY from yeast prion protein Sup35p. J Am Chem Soc 129(16):5117–5130CrossRefGoogle Scholar
  87. Van der Wel PCA, Lewandowski JR, Griffin RG (2010) Structural characterization of GNNQQNY amyloid fibrils by magic angle spinning NMR. Biochemistry 49(44):9457–9469CrossRefGoogle Scholar
  88. Verel R, Tomka IT, Bertozzi C, Cadalbert R, Kammerer RA, Steinmetz MO, Meier BH (2008) Polymorphism in an amyloid-like fibril-forming model peptide. Angew Chem Int Ed 47(31):5842–5845CrossRefGoogle Scholar
  89. Veshaguri S, Christensen SM, Kemmer GC, Ghale G, Møller MP, Lohr C, Christensen AL, Justesen BH, Jørgensen IL, Schiller J, Hatzakis NS, Grabe M, Pomorski TG, Stamou D (2016) Direct observation of proton pumping by a eukaryotic P-type ATPase. Science 351(6280):1469–1473ADSCrossRefGoogle Scholar
  90. Vilar M, Chou H-T, Lührs T, Maji SK, Riek-Loher D, Verel R, Manning G, Stahlberg H, Riek R (2008) The fold of alpha-synuclein fibrils. Proc Natl Acad Sci USA 105(25):8637–8642ADSCrossRefGoogle Scholar
  91. Wang S, Ladizhansky V (2014) Recent advances in magic angle spinning solid state NMR of membrane proteins. Prog Nucl Magn Reson Spectrosc 82:1–26CrossRefGoogle Scholar
  92. Weingarth M, Baldus M (2013) Solid-state NMR-based approaches for supramolecular structure elucidation. Acc Chem Res 46(9):2037–2046CrossRefGoogle Scholar
  93. White ET, Tan WH, Ang JM, Tait S, Litster JD (2007) The density of a protein crystal. Powder Technol 179(1–2):55–58CrossRefGoogle Scholar
  94. Wickramasinghe A, Wang S, Matsuda I, Nishiyama Y, Nemoto T, Endo Y, Ishii Y (2015) Evolution of CPMAS under fast magic-angle-spinning at 100 kHz and beyond. Solid State Nucl Magn Reson 72:9–16CrossRefGoogle Scholar
  95. Wiegand T, Gardiennet C, Ravotti F, Bazin A, Kunert B, Lacabanne D, Cadalbert R, Güntert P, Terradot L, Böckmann A, Meier BH (2015) Solid-state NMR sequential assignments of the N-terminal domain of HpDnaB helicase. Biomol NMR Assign 10(1):13–23CrossRefGoogle Scholar
  96. Wiegand T, Cadalbert R, Gardiennet C, Timmins J, Terradot L, Böckmann A, Meier BH (2016a) Monitoring ssDNA binding to the DnaB helicase from helicobacter pylori by solid-state NMR spectroscopy. Angew Chem Int Ed 55(45):14164–14168CrossRefGoogle Scholar
  97. Wiegand T, Gardiennet C, Cadalbert R, Lacabanne D, Kunert B, Terradot L, Böckmann A, Meier BH (2016b) Variability and conservation of structural domains in divide-and-conquer approaches. J Biomol NMR 65(2):79–86CrossRefGoogle Scholar
  98. Wolfe J, Bryant G (1999) Freezing, drying, and/or vitrification of membrane-solute-water systems. Cryobiology 39(2):103–129CrossRefGoogle Scholar
  99. Zhang Z, Chen Y, Tang X, Li J, Wang L, Yang J (2014) Solid-state NMR shows that dynamically different domains of membrane proteins have different hydration dependence. J Phys Chem B 118(32):9553–9564CrossRefGoogle Scholar
  100. Zhang H, Hou G, Lu M, Ahn J, Byeon I-JL, Langmead CJ, Perilla JR, Hung I, Gor’kov PL, Gan Z, Brey WW, Case DA, Schulten K, Gronenborn AM, Polenova T (2016) HIV-1 capsid function is regulated by dynamics: quantitative atomic-resolution insights by integrating magic-angle-spinning NMR, QM/MM, and MD. J Am Chem Soc 138(42):14066–14075CrossRefGoogle Scholar
  101. Zschörnig O, Paasche G, Thieme C, Korb N, Arnold K (2005) Modulation of lysozyme charge influences interaction with phospholipid vesicles. Colloids Surf B 42(1):69–78CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations