Advertisement

Journal of Biomolecular NMR

, Volume 67, Issue 1, pp 63–76 | Cite as

Peak picking multidimensional NMR spectra with the contour geometry based algorithm CYPICK

  • Julia M. Würz
  • Peter GüntertEmail author
Article

Abstract

The automated identification of signals in multidimensional NMR spectra is a challenging task, complicated by signal overlap, noise, and spectral artifacts, for which no universally accepted method is available. Here, we present a new peak picking algorithm, CYPICK, that follows, as far as possible, the manual approach taken by a spectroscopist who analyzes peak patterns in contour plots of the spectrum, but is fully automated. Human visual inspection is replaced by the evaluation of geometric criteria applied to contour lines, such as local extremality, approximate circularity (after appropriate scaling of the spectrum axes), and convexity. The performance of CYPICK was evaluated for a variety of spectra from different proteins by systematic comparison with peak lists obtained by other, manual or automated, peak picking methods, as well as by analyzing the results of automated chemical shift assignment and structure calculation based on input peak lists from CYPICK. The results show that CYPICK yielded peak lists that compare in most cases favorably to those obtained by other automated peak pickers with respect to the criteria of finding a maximal number of real signals, a minimal number of artifact peaks, and maximal correctness of the chemical shift assignments and the three-dimensional structure obtained by fully automated assignment and structure calculation.

Keywords

Peak picking Peak list Contour lines Automated assignment Structure calculation CYANA 

Notes

Acknowledgements

We thank Torsten Herrmann for providing NOESY spectra and peak lists produced by ATNOS for the CASD-NMR proteins, Piotr Klukowski for providing peak lists produced by the CV-Peak Picker software, and Fred Damberger for helpful discussions. We gratefully acknowledge financial support by the Lichtenberg program of the Volkswagen Foundation, a Grant-in-Aid for Scientific Research of the Japan Society for the Promotion of Science (JSPS), and a Eurostars grant by the Swiss Confederation.

Supplementary material

10858_2016_84_MOESM1_ESM.pdf (3.6 mb)
Supplementary material 1 (PDF 3682 KB)

References

  1. Alipanahi B, Gao X, Karakoc E, Donaldson L, Li M (2009) PICKY: a novel SVD-based NMR spectra peak picking method. Bioinformatics 25:i268–i275CrossRefGoogle Scholar
  2. Bartels C, Xia TH, Billeter M, Güntert P, Wüthrich K (1995) The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J Biomol NMR 6:1–10CrossRefGoogle Scholar
  3. Bourgeois F, Lassalle JC (1971) An extension of the Munkres algorithm for the assignment problem to rectangular matrices. Commun ACM 14:802–804MathSciNetCrossRefzbMATHGoogle Scholar
  4. Buchner L, Güntert P (2015) Systematic evaluation of combined automated NOE assignment and structure calculation with CYANA. J Biomol NMR 62:81–95CrossRefGoogle Scholar
  5. Garrett DS, Powers R, Gronenborn AM, Clore GM (1991) A common sense approach to peak picking two-, three- and four-dimensional spectra using automatic computer analysis of contour diagrams. J Magn Reson 95:214–220ADSGoogle Scholar
  6. Goddard TD, Kneller DG (2001) Sparky 3. University of California, San FranciscoGoogle Scholar
  7. Guerry P, Duong VD, Herrmann T (2015) CASD-NMR 2: robust and accurate unsupervised analysis of raw NOESY spectra and protein structure determination with UNIO. J Biomol NMR 62:473–480CrossRefGoogle Scholar
  8. Güntert P (1998) Structure calculation of biological macromolecules from NMR data. Q Rev Biophys 31:145–237CrossRefGoogle Scholar
  9. Güntert P, Buchner L (2015) Combined automated NOE assignment and structure calculation with CYANA. J Biomol NMR 62:453–471CrossRefGoogle Scholar
  10. Güntert P, Dötsch V, Wider G, Wüthrich K (1992) Processing of multidimensional NMR data with the new software PROSA. J Biomol NMR 2:619–629CrossRefGoogle Scholar
  11. Güntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298CrossRefGoogle Scholar
  12. Herrmann T, Güntert P, Wüthrich K (2002a) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227Google Scholar
  13. Herrmann T, Güntert P, Wüthrich K (2002b) Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J Biomol NMR 24:171–189Google Scholar
  14. Hiller S, Fiorito F, Wüthrich K, Wider G (2005) Automated projection spectroscopy (APSY). Proc Natl Acad Sci USA 102:10876–10881ADSCrossRefGoogle Scholar
  15. Ikeya T, Jee J-G, Shigemitsu Y, Hamatsu J, Mishima M, Ito Y, Kainosho M, Güntert P (2011) Exclusively NOESY-based automated NMR assignment and structure determination of proteins. J Biomol NMR 50:137–146CrossRefGoogle Scholar
  16. Jee J, Güntert P (2003) Influence of the completeness of chemical shift assignments on NMR structures obtained with automated NOE assignment. J Struct Funct Genom 4:179–189CrossRefGoogle Scholar
  17. Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Meth Mol Biol 278:313–352Google Scholar
  18. Johnson BA, Blevins RA (1994) NMR View - a computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614CrossRefGoogle Scholar
  19. Kirchner DK, Güntert P (2011) Objective identification of residue ranges for the superposition of protein structures. BMC Bioinformatics 12:170CrossRefGoogle Scholar
  20. Klukowski P, Walczak MJ, Gonczarek A, Boudet J, Wider G (2015) Computer vision-based automated peak picking applied to protein NMR spectra. Bioinformatics 31:2981–2988CrossRefGoogle Scholar
  21. Koga N, Tatsumi-Koga R, Liu GH, Xiao R, Acton TB, Montelione GT, Baker D (2012) Principles for designing ideal protein structures. Nature 491:222–227ADSCrossRefGoogle Scholar
  22. Koradi R, Billeter M, Engeli M, Güntert P, Wüthrich K (1998) Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY. J Magn Reson 135:288–297ADSCrossRefGoogle Scholar
  23. Liu Z, Abbas A, Jing BY, Gao X (2012) WaVPeak: picking NMR peaks through wavelet-based smoothing and volume-based filtering. Bioinformatics 28:914–920CrossRefGoogle Scholar
  24. López-Méndez B, Güntert P (2006) Automated protein structure determination from NMR spectra. J Am Chem Soc 128:13112–13122CrossRefGoogle Scholar
  25. López-Méndez B, Pantoja-Uceda D, Tomizawa T, Koshiba S, Kigawa T, Shirouzu M, Terada T, Inoue M, Yabuki T, Aoki M, Seki E, Matsuda T, Hirota H, Yoshida M, Tanaka A, Osanai T, Seki M, Shinozaki K, Yokoyama S, Güntert P (2004) NMR assignment of the hypothetical ENTH-VHS domain At3g16270 from Arabidopsis thaliana. J Biomol NMR 29:205–206CrossRefGoogle Scholar
  26. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comp Graph 21:163–169CrossRefGoogle Scholar
  27. Munkres J (1957) Algorithms for the assignment and transportation problems. J Soc Indust Appl Math 5:32–38MathSciNetCrossRefzbMATHGoogle Scholar
  28. Orekhov VY, Ibraghimov IV, Billeter M (2001) MUNIN: a new approach to multi-dimensional NMR spectra interpretation. J Biomol NMR 20:49–60CrossRefGoogle Scholar
  29. Pantoja-Uceda D, López-Méndez B, Koshiba S, Kigawa T, Shirouzu M, Terada T, Inoue M, Yabuki T, Aoki M, Seki E, Matsuda T, Hirota H, Yoshida M, Tanaka A, Osanai T, Seki M, Shinozaki K, Yokoyama S, Güntert P (2004) NMR assignment of the hypothetical rhodanese domain At4g01050 from Arabidopsis thaliana. J Biomol NMR 29:207–208CrossRefGoogle Scholar
  30. Pantoja-Uceda D, López-Méndez B, Koshiba S, Inoue M, Kigawa T, Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K, Yokoyama S, Güntert P (2005) Solution structure of the rhodanese homology domain At4g01050(175–295) from Arabidopsis thaliana. Protein Sci 14:224–230CrossRefGoogle Scholar
  31. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes. The art of scientific computing. Cambridge University Press, CambridgezbMATHGoogle Scholar
  32. Rosato A, Bagaria A, Baker D, Bardiaux B, Cavalli A, Doreleijers JF, Giachetti A, Guerry P, Güntert P, Herrmann T, Huang YJ, Jonker HRA, Mao B, Malliavin TE, Montelione GT, Nilges M, Raman S, van der Schot G, Vranken WF, Vuister GW, Bonvin AMJJ (2009) CASD-NMR: critical assessment of automated structure determination by NMR. Nat Methods 6:625–626CrossRefGoogle Scholar
  33. Rosato A, Aramini JM, Arrowsmith C, Bagaria A, Baker D, Cavalli A, Doreleijers JF, Eletsky A, Giachetti A, Guerry P, Gutmanas A, Güntert P, He YF, Herrmann T, Huang YPJ, Jaravine V, Jonker HRA, Kennedy MA, Lange OF, Liu GH, Malliavin TE, Mani R, Mao BC, Montelione GT, Nilges M, Rossi P, van der Schot G, Schwalbe H, Szyperski TA, Vendruscolo M, Vernon R, Vranken WF, de Vries S, Vuister GW, Wu B, Yang YH, Bonvin AMJJ (2012) Blind testing of routine, fully automated determination of protein structures from NMR data. Structure 20:227–236CrossRefGoogle Scholar
  34. Rosato A, Vranken W, Fogh RH, Ragan TJ, Tejero R, Pederson K, Lee HW, Prestegard JH, Yee A, Wu B, Lemak A, Houliston S, Arrowsmith CH, Kennedy M, Acton TB, Xiao R, Liu GH, Montelione GT, Vuister GW (2015) The second round of critical assessment of automated structure determination of proteins by NMR: CASD-NMR-2013. J Biomol NMR 62:413–424CrossRefGoogle Scholar
  35. Schmidt E, Güntert P (2012) A new algorithm for reliable and general NMR resonance assignment. J Am Chem Soc 134:12817–12829CrossRefGoogle Scholar
  36. Schmidt E, Güntert P (2013) Reliability of exclusively NOESY-based automated resonance assignment and structure determination of proteins. J Biomol NMR 57:193–204CrossRefGoogle Scholar
  37. Scott A, Pantoja-Uceda D, Koshiba S, Inoue M, Kigawa T, Terada T, Shirouzu M, Tanaka A, Sugano S, Yokoyama S, Güntert P (2004) NMR assignment of the SH2 domain from the human feline sarcoma oncogene FES. J Biomol NMR 30:463–464CrossRefGoogle Scholar
  38. Scott A, Pantoja-Uceda D, Koshiba S, Inoue M, Kigawa T, Terada T, Shirouzu M, Tanaka A, Sugano S, Yokoyama S, Güntert P (2005) Solution structure of the Src homology 2 domain from the human feline sarcoma oncogene Fes. J Biomol NMR 31:357–361CrossRefGoogle Scholar
  39. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223CrossRefGoogle Scholar
  40. Shimrat M (1962) Algorithm-112. Position of point relative to polygon. Commun ACM 5:434–434CrossRefGoogle Scholar
  41. Silver R (1960) An algorithm for the assignment problem. Commun ACM 3:605–606CrossRefzbMATHGoogle Scholar
  42. Skinner SP, Fogh RH, Boucher W, Ragan TJ, Mureddu LG, Vuister GW (2016) CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis. J Biomol NMR 66Google Scholar
  43. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Institute of Biophysical Chemistry, Center for Biomolecular Magnetic ResonanceGoethe University Frankfurt am MainFrankfurt am MainGermany
  2. 2.Laboratory of Physical ChemistryETH ZürichZürichSwitzerland
  3. 3.Graduate School of Science and EngineeringTokyo Metropolitan UniversityHachiojiJapan

Personalised recommendations