Journal of Biomolecular NMR

, Volume 65, Issue 1, pp 7–13 | Cite as

Sparse 13C labelling for solid-state NMR studies of P. pastoris expressed eukaryotic seven-transmembrane proteins

  • Jing Liu
  • Chang Liu
  • Ying Fan
  • Rachel A. Munro
  • Vladimir Ladizhansky
  • Leonid S. Brown
  • Shenlin WangEmail author


We demonstrate a novel sparse 13C labelling approach for methylotrophic yeast P. pastoris expression system, towards solid-state NMR studies of eukaryotic membrane proteins. The labelling scheme was achieved by co-utilizing natural abundance methanol and specifically 13C labelled glycerol as carbon sources in the expression medium. This strategy improves the spectral resolution by 1.5 fold, displays site-specific labelling patterns, and has advantages for collecting long-range distance restraints for structure determination of large eukaryotic membrane proteins by solid-state NMR.


Magic-angle-spinning solid-state NMR Sparse 13C isotope labelling Eukaryotic seven-transmembrane proteins P. pastoris expression system 



All NMR experiments were carried out at the Beijing NMR Center or the NMR Facility of the National Center for Protein Sciences at Peking University. This work was supported by the National Natural Science Foundation of China (31470727), by the Beijing National Laboratory for Molecular Sciences, and by the start-up funds from Peking University. S.W. is a recipient of the 1000 plan for young talent program of China. We thank National Center for Protein Sciences at Peking University in Beijing, China, for assistance with MALDI-MS experiments and Dr. Wen Zhou and Dr. Rong Meng for data collection.

Supplementary material

10858_2016_33_MOESM1_ESM.docx (4.8 mb)
Supplementary material 1 (DOCX 4956 kb)


  1. Balayssac S, Bertini I, Bhaumik A, Lelli M, Luchinat C (2008) Paramagnetic shifts in solid-state NMR of proteins to elicit structural information. Proc Natl Acad Sci USA 105:17284–17289. doi: 10.1073/pnas.0708460105 ADSCrossRefGoogle Scholar
  2. Bayro MJ, Huber M, Ramachandran R, Davenport TC, Meier BH, Ernst M, Griffin RG (2009) Dipolar truncation in magic-angle spinning NMR recoupling experiments. J Chem Phys 130:114506. doi: 10.1063/1.3089370 ADSCrossRefGoogle Scholar
  3. Brown LS, Ladizhansky V (2015) Membrane proteins in their native habitat as seen by solid-state NMR spectroscopy. Protein Sci 24:1333–1346. doi: 10.1002/pro.2700 CrossRefGoogle Scholar
  4. Cady SD, Schmidt-Rohr K, Wang J, Soto CS, Degrado WF, Hong M (2010) Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463:689–692. doi: 10.1038/nature08722 ADSCrossRefGoogle Scholar
  5. Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102. doi: 10.1038/nature01070 ADSCrossRefGoogle Scholar
  6. Chow BY et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102. doi: 10.1038/nature08652 ADSCrossRefGoogle Scholar
  7. Cos O, Ramon R, Montesinos JL, Valero F (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 5:17. doi: 10.1186/1475-2859-5-17 CrossRefGoogle Scholar
  8. Emami S, Fan Y, Munro R, Ladizhansky V, Brown LS (2013) Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra. J Biomol NMR 55:147–155. doi: 10.1007/s10858-013-9710-5 CrossRefGoogle Scholar
  9. Fan Y, Shi L, Ladizhansky V, Brown LS (2011) Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment. J Biomol NMR 49:151–161. doi: 10.1007/s10858-011-9473-9 CrossRefGoogle Scholar
  10. Good DB, Wang S, Ward ME, Struppe J, Brown LS, Lewandowski JR, Ladizhansky V (2014) Conformational dynamics of a seven transmembrane helical protein anabaena sensory rhodopsin probed by solid-state NMR. J Am Chem Soc 136:2833–2842. doi: 10.1021/ja411633w CrossRefGoogle Scholar
  11. Hiller M, Higman VA, Jehle S, van Rossum BJ, Kuhlbrandt W, Oschkinat H (2008) [2,3-(13)C]-labeling of aromatic residues–getting a head start in the magic-angle-spinning NMR assignment of membrane proteins. J Am Chem Soc 130:408–409. doi: 10.1021/ja077589n CrossRefGoogle Scholar
  12. Hong M, Jakes K (1999) Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations. J Biomol NMR 14:71–74CrossRefGoogle Scholar
  13. Hu F, Luo W, Hong M (2010) Mechanisms of proton conduction and gating in influenza M2 proton channels from solid-state NMR. Science 330:505–508. doi: 10.1126/science.1191714 ADSCrossRefGoogle Scholar
  14. Inan M, Meagher MM (2001) Non-repressing carbon sources for alcohol oxidase (AOX1) promoter of Pichia pastoris. J Biosci Bioeng 92:585–589CrossRefGoogle Scholar
  15. Jehle S et al (2010) Solid-state NMR and SAXS studies provide a structural basis for the activation of alphaB-crystallin oligomers. Nat Struct Mol Biol 17:1037–1042. doi: 10.1038/nsmb.1891 CrossRefGoogle Scholar
  16. Jorda J et al (2013) Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary (1)(3)C flux analysis. BMC Syst Biol 7:17. doi: 10.1186/1752-0509-7-17 CrossRefGoogle Scholar
  17. LeMaster DM, Kushlan DM (1996) Dynamical mapping of E. coli thioredoxin via C-13 NMR relaxation analysis. J Am Chem Soc 118:9255–9264CrossRefGoogle Scholar
  18. Loquet A et al (2008) 3D structure determination of the Crh protein from highly ambiguous solid-state NMR restraints. J Am Chem Soc 130:3579–3589. doi: 10.1021/ja078014t CrossRefGoogle Scholar
  19. Loquet A, Lv G, Giller K, Becker S, Lange A (2011) 13C spin dilution for simplified and complete solid-state NMR resonance assignment of insoluble biological assemblies. J Am Chem Soc 133:4722–4725. doi: 10.1021/ja200066s CrossRefGoogle Scholar
  20. Loquet A et al (2012) Atomic model of the type III secretion system needle. Nature 486:276–279. doi: 10.1038/nature11079 ADSGoogle Scholar
  21. Lu JX, Qiang W, Yau WM, Schwieters CD, Meredith SC, Tycko R (2013) Molecular structure of beta-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154:1257–1268. doi: 10.1016/j.cell.2013.08.035 CrossRefGoogle Scholar
  22. Mainz A, Religa TL, Sprangers R, Linser R, Kay LE, Reif B (2013) NMR spectroscopy of soluble protein complexes at one mega-dalton and beyond. Angew Chem Int Ed Engl 52:8746–8751. doi: 10.1002/anie.201301215 CrossRefGoogle Scholar
  23. Michal G (1998) Biochemical pathways: an atlas of biochemistry and molecular biology. Wiley, New YorkGoogle Scholar
  24. Park SH et al (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491:779–783. doi: 10.1038/nature11580 ADSCrossRefGoogle Scholar
  25. Renault M et al (2012a) Solid-state NMR spectroscopy on cellular preparations enhanced by dynamic nuclear polarization. Angew Chem Int Ed Engl 51:2998–3001. doi: 10.1002/anie.201105984 CrossRefGoogle Scholar
  26. Renault M, Tommassenl-van Boxte R, Bos MP, Post JA, Tommassen J, Baldus M (2012b) Cellular solid-state nuclear magnetic resonance spectroscopy. Proc Natl Acad Sci USA 109:4863–4868. doi: 10.1073/pnas.1116478109 ADSCrossRefGoogle Scholar
  27. Shahid SA, Bardiaux B, Franks WT, Krabben L, Habeck M, van Rossum BJ, Linke D (2012) Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals. Nat Methods 9:1212–1217. doi: 10.1038/nmeth.2248 CrossRefGoogle Scholar
  28. Sinnige T, Houben K, Pritisanac I, Renault M, Boelens R, Baldus M (2015a) Insight into the conformational stability of membrane-embedded BamA using a combined solution and solid-state NMR approach. J Biomol NMR 61:321–332. doi: 10.1007/s10858-014-9891-6 CrossRefGoogle Scholar
  29. Sinnige T, Weingarth M, Daniels M, Boelens R, Bonvin AM, Houben K, Baldus M (2015b) Conformational plasticity of the POTRA 5 domain in the outer membrane protein assembly factor BamA. Structure 23:1317–1324. doi: 10.1016/j.str.2015.04.014 CrossRefGoogle Scholar
  30. Sola A, Maaheimo H, Ylonen K, Ferrer P, Szyperski T (2004) Amino acid biosynthesis and metabolic flux profiling of Pichia pastoris. Eur J Biochem 271:2462–2470. doi: 10.1111/j.1432-1033.2004.04176.x CrossRefGoogle Scholar
  31. Sola A, Jouhten P, Maaheimo H, Sanchez-Ferrando F, Szyperski T, Ferrer P (2007) Metabolic flux profiling of Pichia pastoris grown on glycerol/methanol mixtures in chemostat cultures at low and high dilution rates. Microbiology 153:281–290. doi: 10.1099/mic.0.29263-0 CrossRefGoogle Scholar
  32. Tang M et al (2011) High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. J Biomol NMR 51:227–233. doi: 10.1007/s10858-011-9565-6 CrossRefGoogle Scholar
  33. Traaseth NJ, Shi L, Verardi R, Mullen DG, Barany G, Veglia G (2009) Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid-state NMR approach. Proc Natl Acad Sci USA 106:10165–10170. doi: 10.1073/pnas.0904290106 ADSCrossRefGoogle Scholar
  34. Voet D, Voet JG (1995) Biochemistry. Wiley, New YorkGoogle Scholar
  35. Wang S et al (2013) Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat Methods 10:1007–1012. doi: 10.1038/nmeth.2635 CrossRefGoogle Scholar
  36. Ward ME et al (2015) In situ structural studies of Anabaena sensory rhodopsin in the E. coli membrane. Biophys J 108:1683–1696. doi: 10.1016/j.bpj.2015.02.018 CrossRefGoogle Scholar
  37. Waschuk SA, Bezerra AG, Shi L, Brown LS (2005) Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. Proc Natl Acad Sci USA 102:6879–6883ADSCrossRefGoogle Scholar
  38. Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526. doi: 10.1126/science.1151839 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Beijing NMR CentrePeking UniversityBeijingChina
  2. 2.College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  3. 3.Beijing National Laboratory for Molecular SciencesBeijingChina
  4. 4.The Scripps Research InstituteLa JollaUSA
  5. 5.Department of PhysicsUniversity of GuelphGuelphCanada
  6. 6.Biophysics Interdepartmental GroupUniversity of GuelphGuelphCanada

Personalised recommendations