Journal of Biomolecular NMR

, Volume 64, Issue 4, pp 275–280 | Cite as

Algal autolysate medium to label proteins for NMR in mammalian cells

  • Carmelo Fuccio
  • Enrico Luchinat
  • Letizia Barbieri
  • Sara Neri
  • Marco Fragai
Article

Abstract

In-cell NMR provides structural and functional information on proteins directly inside living cells. At present, the high costs of the labeled media for mammalian cells represent a limiting factor for the development of this methodology. Here we report a protocol to prepare a homemade growth medium from Spirulina platensis autolysate, suitable to express uniformly labeled proteins inside mammalian cells at a reduced cost-per-sample. The human proteins SOD1 and Mia40 were overexpressed in human cells grown in 15N-enriched S. platensis algal-derived medium, and high quality in-cell NMR spectra were obtained.

Keywords

In-cell NMR Cell culture Mammalian cells Spirulina platensis Protein expression Isotopic labeling 

Notes

Acknowledgments

This work has been supported by MIUR—Project: BIOLABEL “Valorizzazione della biomassa algale per la marcatura isotopica delle biomolecole”.

Supplementary material

10858_2016_26_MOESM1_ESM.docx (914 kb)
Supplementary material 1 (DOCX 913 kb)

References

  1. Aricescu AR, Owens RJ (2013) Expression of recombinant glycoproteins in mammalian cells: towards an integrative approach to structural biology. Curr Opin Struct Biol 23:345–356CrossRefGoogle Scholar
  2. Aricescu AR, Lu W, Jones EY (2006) A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr D Biol Crystallogr 62:1243–1250CrossRefGoogle Scholar
  3. Banci L, Barbieri L, Bertini I, Cantini F, Luchinat E (2011) In-cell NMR in E. coli to monitor maturation steps of hSOD1. PLoS One 6:e23561CrossRefADSGoogle Scholar
  4. Banci L, Barbieri L, Bertini I, Luchinat E, Secci E, Zhao Y, Aricescu AR (2013a) Atomic-resolution monitoring of protein maturation in live human cells by NMR. Nat Chem Biol 9:297–299CrossRefGoogle Scholar
  5. Banci L, Barbieri L, Luchinat E, Secci E (2013b) Visualization of redox-controlled protein fold in living cells. Chem Biol 20:747–752CrossRefGoogle Scholar
  6. Bertrand K, Reverdatto S, Burz DS, Zitomer R, Shekhtman A (2012) Structure of proteins in eukaryotic compartments. J Am Chem Soc 134:12798–12806CrossRefGoogle Scholar
  7. Bussow K (2015) Stable mammalian producer cell lines for structural biology. Curr Opin Struct Biol 32:81–90CrossRefGoogle Scholar
  8. Dutta A, Saxena K, Schwalbe H, Klein-Seetharaman J (2012) Isotope labeling in mammalian cells. Methods Mol Biol 831:55–69CrossRefGoogle Scholar
  9. Egorova-Zachernyuk TA, Bosman GJ, Pistorius AM, Degrip WJ (2009) Production of yeastolates for uniform stable isotope labelling in eukaryotic cell culture. Appl Microbiol Biotechnol 84:575–581CrossRefGoogle Scholar
  10. Egorova-Zachernyuk TA, Bosman GJ, Degrip WJ (2011) Uniform stable-isotope labeling in mammalian cells: formulation of a cost-effective culture medium. Appl Microbiol Biotechnol 89:397–406CrossRefGoogle Scholar
  11. Freedberg DI, Selenko P (2014) Live cell NMR. Annu Rev Biophys 43:171–192CrossRefGoogle Scholar
  12. Freshney R (1987) Culture of animal cells: a manual of basic technique. Alan R. Liss Inc, New YorkGoogle Scholar
  13. Hänsel R, Folfynovà-Trantirkovà S, Löhr F, Buck J, Bongartz E, Bamberg E, Schwabe H, Dötsch V, Trantìrek L (2009) Evaluation of parameters critical for observing nucleic acids inside living Xenopus laevis oocytes by in-cell NMR spectroscopy. J Am Chem Soc 131:15761–15768CrossRefGoogle Scholar
  14. Hänsel R, Luh LM, Corbeski I, Trantirek L, Dotsch V (2014) In-cell NMR and EPR spectroscopy of biomacromolecules. Angew Chem Int Ed Engl 53:10300–10314CrossRefGoogle Scholar
  15. Hansen AP, Petros AM, Mazar AP, Pederson TM, Rueter A, Fesik SW (1992) A practical method for uniform isotopic labeling of recombinant proteins in mammalian cells. Biochemistry 31:12713–12718CrossRefGoogle Scholar
  16. Hosseini SM, Khosravi-Darani K, Mozafari MR (2013) Nutritional and medical applications of spirulina microalgae. Mini Rev Med Chem 13:1231–1237CrossRefGoogle Scholar
  17. Inomata K, Ohno A, Tochio H, Isogai S, Tenno T, Nakase I, Takeuchi T, Futaki S, Ito Y, Hirokai H, Shirakawa M (2009) High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature 458:106–109CrossRefADSGoogle Scholar
  18. Ishimi Y, Sugiyama F, Ezaki J, Fujioka M, Wu J (2006) Effects of spirulina, a blue-green alga, on bone metabolism in ovariectomized rats and hindlimb-unloaded mice. Biosci Biotechnol Biochem 70:363–368CrossRefGoogle Scholar
  19. Khan Z, Bhadouria P, Bisen PS (2005) Nutritional and therapeutic potential of Spirulina. Curr Pharm Biotechnol 6:373–379CrossRefGoogle Scholar
  20. Kubo S, Nishida N, Udagawa Y, Takarada O, Ogino S, Shimada I (2013) A gel-encapsulated bioreactor system for NMR studies of protein-protein interactions in living mammalian cells. Angew Chem Int Ed Engl 52:1208–1211CrossRefGoogle Scholar
  21. Luchinat E, Barbieri L, Rubino JT, Kozyreva T, Cantini F, Banci L (2014) In-cell NMR reveals potential precursor of toxic species from SOD1 fALS mutants. Nat Commun 5:5502CrossRefADSGoogle Scholar
  22. Luh LM, Hänsel R, Lohr F, Kirchner DK, Krauskopf K, Pitzius S, Schafer B, Tufar P, Corbeski I, Guntert P, Dotsch V (2013) Molecular crowding drives active Pin1 into nonspecific complexes with endogenous proteins prior to substrate recognition. J Am Chem Soc 135:13796–13803CrossRefGoogle Scholar
  23. McClatchy DB, Dong MQ, Wu CC, Venable JD, Yates JR III (2007) 15N metabolic labeling of mammalian tissue with slow protein turnover. J Proteome Res 6:2005–2010CrossRefGoogle Scholar
  24. Meyer S, Lorenz C, Baser B, Wordehoff M, Jager V, van den Heuvel J (2013) Multi-host expression system for recombinant production of challenging proteins. PLoS One 8:e68674CrossRefADSGoogle Scholar
  25. Pham PL, Kamen A, Durocher Y (2006) Large-scale transfection of mammalian cells for the fast production of recombinant protein. Mol Biotechnol 34:225–237CrossRefGoogle Scholar
  26. Schanda P, Brutscher B (2005) Very fast two-dimensional NMR Spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J Am Chem Soc 127:8014–8015CrossRefGoogle Scholar
  27. Seiradake E, Zhao Y, Lu W, Aricescu AR, Jones EY (2015) Production of cell surface and secreted glycoproteins in mammalian cells. Methods Mol Biol 1261:115–127CrossRefGoogle Scholar
  28. Selenko P, Wagner G (2007) Looking into live cells with in-cell NMR spectroscopy. J Struct Biol 158:244–253CrossRefGoogle Scholar
  29. Selenko P, Serber Z, Gadea B, Ruderman J, Wagner G (2006) Quantitative NMR analysis of the protein G B1 domain in Xenopus laevis egg extracts and intact oocytes. Proc Natl Acad Sci USA 103:11904–11909CrossRefADSGoogle Scholar
  30. Smith AE, Zhang Z, Pielak GJ, Li C (2015) NMR studies of protein folding and binding in cells and cell-like environments. Curr Opin Struct Biol 30:7–16CrossRefGoogle Scholar
  31. Sugiki T, Ichikawa O, Miyazawa-Onami M, Shimada I, Takahashi H (2012) Isotopic labeling of heterologous proteins in the yeast Pichia pastoris and Kluyveromyces lactis. Methods Mol Biol 831:19–36CrossRefGoogle Scholar
  32. Werner K, Richter C, Klein-Seetharaman J, Schwalbe H (2008) Isotope labeling of mammalian GPCRs in HEK293 cells and characterization of the C-terminus of bovine rhodopsin by high resolution liquid NMR spectroscopy. J Biomol NMR 40:49–53CrossRefGoogle Scholar
  33. Wong VW, Reid DG, Chow WY, Rajan R, Green M, Brooks RA, Duer MJ (2015) Preparation of highly and generally enriched mammalian tissues for solid state NMR. J Biomol NMR 63:119–123CrossRefGoogle Scholar
  34. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398CrossRefGoogle Scholar
  35. Wurm F, Bernard A (1999) Large-scale transient expression in mammalian cells for recombinant protein production. Curr Opin Biotechnol 10:156–159CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Carmelo Fuccio
    • 1
  • Enrico Luchinat
    • 1
    • 2
  • Letizia Barbieri
    • 1
    • 3
  • Sara Neri
    • 3
  • Marco Fragai
    • 1
    • 4
  1. 1.Magnetic Resonance Center (CERM)University of FlorenceSesto Fiorentino, FlorenceItaly
  2. 2.Department of Biomedical, Clinical and Experimental SciencesUniversity of FlorenceFlorenceItaly
  3. 3.Giotto Biotech S.R.L.Sesto Fiorentino, FlorenceItaly
  4. 4.Department of Chemistry “Ugo Schiff”University of FlorenceSesto Fiorentino, FlorenceItaly

Personalised recommendations