Advertisement

Journal of Biomolecular NMR

, Volume 64, Issue 3, pp 207–221 | Cite as

Direct 13C-detected NMR experiments for mapping and characterization of hydrogen bonds in RNA

  • Boris Fürtig
  • Robbin Schnieders
  • Christian Richter
  • Heidi Zetzsche
  • Sara Keyhani
  • Christina Helmling
  • Helena Kovacs
  • Harald Schwalbe
Article

Abstract

In RNA secondary structure determination, it is essential to determine whether a nucleotide is base-paired and not. Base-pairing of nucleotides is mediated by hydrogen bonds. The NMR characterization of hydrogen bonds relies on experiments correlating the NMR resonances of exchangeable protons and can be best performed for structured parts of the RNA, where labile hydrogen atoms are protected from solvent exchange. Functionally important regions in RNA, however, frequently reveal increased dynamic disorder which often leads to NMR signals of exchangeable protons that are broadened beyond 1H detection. Here, we develop 13C direct detected experiments to observe all nucleotides in RNA irrespective of whether they are involved in hydrogen bonds or not. Exploiting the self-decoupling of scalar couplings due to the exchange process, the hydrogen bonding behavior of the hydrogen bond donor of each individual nucleotide can be determined. Furthermore, the adaption of HNN-COSY experiments for 13C direct detection allows correlations of donor–acceptor pairs and the localization of hydrogen-bond acceptor nucleotides. The proposed 13C direct detected experiments therefore provide information about molecular sites not amenable by conventional proton-detected methods. Such information makes the RNA secondary structure determination by NMR more accurate and helps to validate secondary structure predictions based on bioinformatics.

Keywords

13C direct detection RNA Exchange Hydrogen bonds Base pairs 

Notes

Acknowledgments

This work was funded by the German funding agency (DFG) in Collaborative Research Center 902: Molecular principles of RNA-based regulation and in Graduate College: CLIC. Financial support by the Access to Research Infrastructures activity in the 6th Framework Programme of the EC (Contract # RII3-026145, EU-NMR) for conducting the research is gratefully acknowledged. Harald Schwalbe is member of the DFG-funded Cluster of Excellence: macromolecular complexes (EXC115). Christina Helmling is supported by the Fonds of the Chemical Industry. Work at BMRZ is supported by the state of Hesse.

Supplementary material

10858_2016_21_MOESM1_ESM.pdf (653 kb)
Supplementary material 1 (PDF 653 kb)

References

  1. Bermel W et al (2003) 13C direct detection experiments on the paramagnetic oxidized monomeric copper, zinc superoxide dismutase. J Am Chem Soc 125(52):16423–16429CrossRefGoogle Scholar
  2. Bermel W et al (2006) 13C-detected protonless NMR spectroscopy of proteins in solution. Prog Nucl Magn Reson Spectrosc 48(1):25–45CrossRefGoogle Scholar
  3. Bermel W et al (2008) 13C Direct-detection biomolecular NMR. Concepts Magn Reson Part A 32A(3):183–200CrossRefGoogle Scholar
  4. Bermel W et al (2009) H-start for exclusively heteronuclear NMR spectroscopy: the case of intrinsically disordered proteins. J Magn Reson (San Diego, Calif.: 1997) 198(2):275–281CrossRefGoogle Scholar
  5. Bermel W et al (2010) Exclusively heteronuclear NMR experiments to obtain structural and dynamic information on proteins. ChemPhysChem 11(3):689–695CrossRefGoogle Scholar
  6. Bermel W et al (2013) High-dimensionality 13C direct-detected NMR experiments for the automatic assignment of intrinsically disordered proteins. J Biomol NMR 57(4):353–361CrossRefGoogle Scholar
  7. Bertini I et al (2011) 13C direct-detection biomolecular NMR spectroscopy in living cells. Angew Chem Int Ed Engl 50(10):2339–2341MathSciNetCrossRefGoogle Scholar
  8. Buck J et al (2007) Time-resolved NMR methods resolving ligand-induced RNA folding at atomic resolution. Proc Natl Acad Sci USA 104(40):15699–15704ADSCrossRefGoogle Scholar
  9. Buck J et al (2011) Mapping the landscape of RNA dynamics with NMR spectroscopy. Acc Chem Res 44(12):1292–1301CrossRefGoogle Scholar
  10. Chou SH et al (1984) Sequence-specific recognition of DNA: NMR studies of the imino protons of a synthetic RNA polymerase promoter. Biochemistry 23(10):2257–2262CrossRefGoogle Scholar
  11. Dallmann A et al (2013) Efficient detection of hydrogen bonds in dynamic regions of RNA by sensitivity-optimized NMR pulse sequences. Angew Chem Int Ed Engl 52(40):10487–10490CrossRefGoogle Scholar
  12. Dhavan GM et al (1999) Decreased imino proton exchange and base-pair opening in the IHF-DNA complex measured by NMR. J Mol Biol 288(4):659–671CrossRefGoogle Scholar
  13. Dingley AJ, Grzesiek S (1998) Direct observation of hydrogen bonds in nucleic acid base pairs by. J Am Chem Soc 7863(9):714–718Google Scholar
  14. Doetsch M, Schroeder R, Fürtig B (2011) Transient RNA-protein interactions in RNA folding. FEBS J 278(10):1634–1642CrossRefGoogle Scholar
  15. Duchardt-Ferner E, Ferner J, Wöhnert J (2011) Rapid identification of noncanonical RNA structure elements by direct detection of OH O=P, NH O=P, and NH2O=P hydrogen bonds in solution NMR spectroscopy. Angew Chem Int Ed Engl 50(34):7927–7930CrossRefGoogle Scholar
  16. Eletsky A et al (2005) A novel strategy for the assignment of side-chain resonances in completely deuterated large proteins using 13C spectroscopy. J Biomol NMR 26(2):167–179CrossRefGoogle Scholar
  17. Farès C, Amata I, Carlomagno T (2007) 13C-detection in RNA bases: revealing structure-chemical shift relationships. J Am Chem Soc 129(51):15814–15823CrossRefGoogle Scholar
  18. Fiala R, Sklenár V (2007) 13C-detected NMR experiments for measuring chemical shifts and coupling constants in nucleic acid bases. J Biomol NMR 39(2):153–163CrossRefGoogle Scholar
  19. Fritzsche H, Kan LS, Ts’o POP (1981) Proton nuclear magnetic resonance study on uridine imido proton exchange. Biochemistry 20(21):6118–6122CrossRefGoogle Scholar
  20. Fürtig B et al (2003) NMR spectroscopy of RNA. Chembiochem 4(10):936–962CrossRefGoogle Scholar
  21. Fürtig B et al (2004) New NMR experiments for RNA nucleobase resonance assignment and chemical shift analysis of an RNA UUCG tetraloop. J Biomol NMR 28(1):69–79CrossRefGoogle Scholar
  22. Fürtig B et al (2007) Conformational dynamics of bistable RNAs studied by time-resolved NMR spectroscopy. J Am Chem Soc 129(51):16222–16229CrossRefGoogle Scholar
  23. Guéron M, Leroy JL (1995) Studies of base pair kinetics by NMR measurement of proton exchange. Methods Enzymol 261:383–413CrossRefGoogle Scholar
  24. Guillerez J et al (2005) A mutation in T7 RNA polymerase that facilitates promoter clearance. Proc Natl Acad Sci USA 102(17):5958–5963ADSCrossRefGoogle Scholar
  25. Hammarstroem A, Otting G (1994) Improved spectral resolution in 1H NMR spectroscopy by homonuclear semiselective shaped pulse decoupling during acquisition. J Am Chem Soc 116(19):8847–8848CrossRefGoogle Scholar
  26. Hänsel R et al (2009) Evaluation of parameters critical for observing nucleic acids inside living Xenopus laevis oocytes by in-cell NMR spectroscopy. J Am Chem Soc 131(43):15761–15768CrossRefGoogle Scholar
  27. Helmling C et al (2015) Rapid NMR screening of RNA secondary structure and binding. J Biomol NMR 63(1):67–76CrossRefGoogle Scholar
  28. Hennig M, Williamson JR (2000) Detection of N–H…N hydrogen bonding in RNA via scalar couplings in the absence of observable imino proton resonances. Nucleic Acids Res 28(7):1585–1593CrossRefGoogle Scholar
  29. Kateb F, Pelupessy P, Bodenhausen G (2007) Measuring fast hydrogen exchange rates by NMR spectroscopy. J Magn Reson (San Diego, Calif.: 1997) 184(1):108–113CrossRefGoogle Scholar
  30. Kearns DR, Patel DJ, Shulman RG (1971) High resolution nuclear magnetic resonance studies of hydrogen bonded protons of tRNA in water. Nature 229(5283):338–339ADSCrossRefGoogle Scholar
  31. Kovacs H, Moskau D, Spraul M (2005) Cryogenically cooled probes—a leap in NMR technology. Prog Nucl Magn Reson Spectrosc 46(2–3):131–155CrossRefGoogle Scholar
  32. Lawrence CW, Showalter SA (2012) Carbon-detected 15N NMR spin relaxation of an intrinsically disordered protein: FCP1 dynamics unbound and in complex with RAP74. J Phys Chem Lett 3(10):1409–1413CrossRefGoogle Scholar
  33. Leroy J et al (1985) Internal motions of transfer-RNA—a study of exchanging protons by magnetic-resonance. J Biomol Struct Dyn 2(5):915–939CrossRefGoogle Scholar
  34. London RE (1990) A theoretical evaluation of the significance of scalar relaxation in coupled systems in macromolecules. J Magn Reson (1969) 86(2):410–415CrossRefGoogle Scholar
  35. Luy, B. et al., 2002. Observation of H-bond mediated 3hJH2H3 coupling constants across Watson–Crick AU base pairs in RNA. J Biomol NMR, 24(2), pp 133–42. http://www.ncbi.nlm.nih.gov/pubmed/12495029. Accessed 12 Aug 2015
  36. Majumdar A, Patel DJ (2002) Identifying hydrogen bond alignments in multistranded DNA architectures by NMR. Acc Chem Res 35(1):1–11CrossRefGoogle Scholar
  37. Majumdar A, Gosser Y, Patel DJ (2001) 1H-1H correlations across N–H…N hydrogen bonds in nucleic acids. J Biomol NMR 21(4):289–306CrossRefGoogle Scholar
  38. Markowski V, Sullivan GR, Roberts JD (1977) Nitrogen-15 nuclear magnetic resonance spectroscopy of some nucleosides and nucleotides. J Am Chem Soc 99(3):714–718CrossRefGoogle Scholar
  39. Muhandiram DR, Kay LE (1994) Gradient-enhanced triple-resonance three-dimensional NMR experiments with improved sensitivity. J Magn Reson Ser B 103(3):203–216CrossRefGoogle Scholar
  40. Nozinovic S et al (2010) High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Res 38(2):683–694CrossRefGoogle Scholar
  41. Ottiger M, Delaglio F, Bax A (1998) Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Reson (San Diego, Calif.: 1997) 131(2):373–378CrossRefGoogle Scholar
  42. Pantoja-Uceda D, Santoro J (2014) New 13C-detected experiments for the assignment of intrinsically disordered proteins. J Biomol NMR 59(1):43–50CrossRefGoogle Scholar
  43. Plum GE, Bloomfield VA (1990) Effects of spermidine and hexaamminecobalt(III) on thymine imino proton exchange. Biochemistry 29(25):5934–5940CrossRefGoogle Scholar
  44. Richter C et al (2010) 13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides. J Biomol NMR 47(4):259–269CrossRefGoogle Scholar
  45. Rinnenthal J et al (2010) Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution. Nucleic Acids Res 38(11):3834–3847CrossRefGoogle Scholar
  46. Rordorf BF, Kearns DR (1975) NMR investigation of proton exchange in transfer RNA by high resolution NMR. Biochem Biophys Res Commun 65(3):857–862CrossRefGoogle Scholar
  47. Salgado GF et al (2015) G-quadruplex DNA and ligand interaction in living cells using NMR spectroscopy. Chem Sci 6(6):3314–3320CrossRefGoogle Scholar
  48. Schimmel PR, Redfield AG (1980) Transfer RNA in Solution: Selected Topics. Annu Rev Biophys Bioeng 9:181–221CrossRefGoogle Scholar
  49. Sehgal AA et al (2014) Fast proton exchange in histidine: measurement of rate constants through indirect detection by NMR spectroscopy. Chemistry (Weinheim an der Bergstrasse, Germany) 20(21):6332–6338Google Scholar
  50. Serber Z et al (2000) New carbon-detected protein NMR experiments using cryoprobes. J Am Chem Soc 122(14):3554–3555CrossRefGoogle Scholar
  51. Serber Z, Richter C, Dötsch V (2001) Carbon-detected NMR experiments to investigate structure and dynamics of biological macromolecules. Chembiochem 2(4):247–251CrossRefGoogle Scholar
  52. Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64:547–552ADSGoogle Scholar
  53. Snoussi K, Leroy JL (2001) Imino proton exchange and base-pair kinetics in RNA duplexes. Biochemistry 40(30):8898–8904CrossRefGoogle Scholar
  54. Solomon I, Bloembergen N (1956) Nuclear magnetic interactions in the HF molecule. J Chem Phys 25(2):261ADSCrossRefGoogle Scholar
  55. Steinert HS, Rinnenthal J, Schwalbe H (2012) Individual basepair stability of DNA and RNA studied by NMR-detected solvent exchange. Biophys J 102(11):2564–2574CrossRefGoogle Scholar
  56. Wagner D et al (2015) Mechanistic insights into temperature-dependent regulation of the simple cyanobacterial hsp17 RNA thermometer at base-pair resolution. Nucleic Acids Res 43(11):5572–5585CrossRefGoogle Scholar
  57. Ying J et al (2014) 13Cα decoupling during direct observation of carbonyl resonances in solution NMR of isotopically enriched proteins. J Biomol NMR 60(1):15–21CrossRefGoogle Scholar
  58. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical BiologyJohann Wolfgang Goethe Universität FrankfurtFrankfurtGermany
  2. 2.Bruker BioSpinFällandenSwitzerland

Personalised recommendations