Advertisement

Journal of Biomolecular NMR

, Volume 64, Issue 2, pp 153–164 | Cite as

Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy

  • Wenxing Tang
  • Avni Bhatt
  • Adam N. Smith
  • Paula J. Crowley
  • L. Jeannine BradyEmail author
  • Joanna R. LongEmail author
Article

Abstract

The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ~57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to (1) globally characterize cell walls isolated from a Gram-positive bacterium and (2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin.

Keywords

Gram-positive bacteria Streptococcus mutans Dental caries Adhesin Amyloid Cell surface Solid-state NMR 

Abbreviations

MAb

Monoclonal antibody

MAS

Magic angle spinning

NMR

Nuclear magnetic resonance

ssNMR

Solid-state NMR

CR

Congo red

SAG

Salivary agglutinin glycoprotein complex

Notes

Acknowledgments

We would like to thank Drs. Kyle Heim and Richard Besingi for helpful discussions. This work was supported in part by National Institutes of Health Grants R01DE08007 and R01DE21789 from the NIDCR. A portion of this work was performed in the McKnight Brain Institute at the National High Magnetic Field Laboratory’s AMRIS Facility, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490, the State of Florida, and an NIH award, S10RR031637, for magnetic resonance instrumentation.

Supplementary material

10858_2016_17_MOESM1_ESM.pdf (574 kb)
Supplementary material 1 (PDF 573 kb)

References

  1. Ahn SJ, Ahn SJ, Wen ZT, Brady LJ, Burne RA (2008) Characteristics of biofilm formation by Streptococcus mutans in the presence of saliva. Infect Immun 76:4259–4268. doi: 10.1128/IAI.00422-08 CrossRefGoogle Scholar
  2. Ayakawa GY, Boushell LW, Crowley PJ, Erdos GW, McArthur WP, Bleiweis AS (1987) Isolation and characterization of monoclonal antibodies specific for antigen P1, a major surface protein of mutans streptococci. Infect Immun 55:2759–2767Google Scholar
  3. Banas JA (2004) Virulence properties of Streptococcus mutans. Front Biosci 9:1267–1277CrossRefGoogle Scholar
  4. Baspinar A, Cukuroglu E, Nussinov R, Keskin O, Gursoy A (2014) PRISM: a web server and repository for prediction of protein-protein interactions and modeling their 3D complexes. Nucleic Acids Res 42:W285–W289. doi: 10.1093/nar/gku397 CrossRefGoogle Scholar
  5. Blanco LP, Evans ML, Smith DR, Badtke MP, Chapman MR (2012) Diversity, biogenesis and function of microbial amyloids. Trends Microbiol 20:66–73. doi: 10.1016/j.tim.2011.11.005 CrossRefGoogle Scholar
  6. Brady LJ, Crowley PJ, Ma JK, Kelly C, Lee SF, Lehner T, Bleiweis AS (1991a) Restriction fragment length polymorphisms and sequence variation within the spaP gene of Streptococcus mutans serotype c isolates. Infect Immun 59:1803–1810Google Scholar
  7. Brady LJ, Piacentini DA, Crowley PJ, Bleiweis AS (1991b) Identification of monoclonal antibody-binding domains within antigen P1 of Streptococcus mutans and cross-reactivity with related surface antigens of oral streptococci. Infect Immun 59:4425–4435Google Scholar
  8. Brady LJ, Piacentini DA, Crowley PJ, Oyston PC, Bleiweis AS (1992) Differentiation of salivary agglutinin-mediated adherence and aggregation of mutans streptococci by use of monoclonal antibodies against the major surface adhesin P1. Infect Immun 60:1008–1017Google Scholar
  9. Brady LJ, Maddocks SE, Larson MR, Forsgren N, Persson K, Deivanayagam CC, Jenkinson HF (2010) The changing faces of Streptococcus antigen I/II polypeptide family adhesins. Mol Microbiol 77:276–286. doi: 10.1111/j.1365-2958.2010.07212.x CrossRefGoogle Scholar
  10. Chuzeville S, Dramsi S, Madec JY, Haenni M, Payot S (2015) Antigen I/II encoded by integrative and conjugative elements of Streptococcus agalactiae and role in biofilm formation. Microb Pathog 88:1–9. doi: 10.1016/j.micpath.2015.07.018 CrossRefGoogle Scholar
  11. Claessen D et al (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17:1714–1726. doi: 10.1101/gad.264303 CrossRefGoogle Scholar
  12. Crowley PJ, Brady LJ, Michalek SM, Bleiweis AS (1999) Virulence of a spaP mutant of Streptococcus mutans in a gnotobiotic rat model. Infect Immun 67:1201–1206Google Scholar
  13. de Jong W, Wosten HA, Dijkhuizen L, Claessen D (2009) Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Mol Microbiol 73:1128–1140. doi: 10.1111/j.1365-2958.2009.06838.x CrossRefGoogle Scholar
  14. DePas WH, Chapman MR (2012) Microbial manipulation of the amyloid fold. Res Microbiol 163:592–606. doi: 10.1016/j.resmic.2012.10.009 CrossRefGoogle Scholar
  15. Forester H, Hunter N, Knox KW (1983) Characteristics of a high molecular weight extracellular protein of Streptococcus mutans. J Gen Microbiol 129:2779–2788Google Scholar
  16. Forssten SD, Bjorklund M, Ouwehand AC (2010) Streptococcus mutans, caries and simulation models. Nutrients 2:290–298. doi: 10.3390/nu2030290 CrossRefGoogle Scholar
  17. Gullion T, Schaefer J (1989) Rotational-echo double-resonance NMR. J Magn Reson 81:196–200. doi: 10.1016/0022-2364(89)90280-1 ADSGoogle Scholar
  18. Hajishengallis G, Koga T, Russell MW (1994) Affinity and specificity of the interactions between Streptococcus mutans antigen I/II and salivary components. J Dent Res 73:1493–1502Google Scholar
  19. Hardy LN, Knox KW, Brown RA, Wicken AJ, Fitzgerald RJ (1986) Comparison of extracellular protein profiles of seven serotypes of mutans streptococci grown under controlled conditions. J Gen Microbiol 132:1389–1400Google Scholar
  20. Heim KP, Crowley PJ, Brady LJ (2013) An intramolecular interaction involving the N terminus of a streptococcal adhesin affects its conformation and adhesive function. J Biol Chem 288:13762–13774. doi: 10.1074/jbc.M113.459974 CrossRefGoogle Scholar
  21. Heim KP, Crowley PJ, Long JR, Kailasan S, McKenna R, Brady LJ (2014) An intramolecular lock facilitates folding and stabilizes the tertiary structure of Streptococcus mutans adhesin P1. Proc Natl Acad Sci USA 111:15746–15751. doi: 10.1073/pnas.1413018111 CrossRefADSGoogle Scholar
  22. Heim KP et al (2015) Identification of a supramolecular functional architecture of Streptococcus mutans adhesin P1 on the bacterial cell surface. J Biol Chem 290:9002–9019. doi: 10.1074/jbc.M114.626663 CrossRefGoogle Scholar
  23. Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR (2015) Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev. doi: 10.1093/femsre/fuv015 Google Scholar
  24. Homonylo-McGavin MK, Lee SF, Bowden GH (1999) Subcellular localization of the Streptococcus mutans P1 protein C terminus. Can J Microbiol 45:536–539CrossRefGoogle Scholar
  25. Kelly C et al (1989) Sequence analysis of the cloned streptococcal cell surface antigen I/II. FEBS Lett 258:127–132CrossRefGoogle Scholar
  26. Kelly C et al (1990) Sequencing and characterization of the 185 kDa cell surface antigen of Streptococcus mutans. Arch Oral Biol 35(Suppl):33S–38SCrossRefGoogle Scholar
  27. Knox KW, Hardy LN, Wicken AJ (1986) Comparative studies on the protein profiles and hydrophobicity of strains of Streptococcus mutans serotype c. J Gen Microbiol 132:2541–2548Google Scholar
  28. Larson MR et al (2010) Elongated fibrillar structure of a streptococcal adhesin assembled by the high-affinity association of alpha- and PPII-helices. Proc Natl Acad Sci U S A 107:5983–5988. doi: 10.1073/pnas.0912293107 CrossRefADSGoogle Scholar
  29. Larson MR, Rajashankar KR, Crowley PJ, Kelly C, Mitchell TJ, Brady LJ, Deivanayagam C (2011) Crystal structure of the C-terminal region of Streptococcus mutans antigen I/II and characterization of salivary agglutinin adherence domains. J Biol Chem 286:21657–21666. doi: 10.1074/jbc.M111.231100 CrossRefGoogle Scholar
  30. Lee SF (1995) Active release of bound antibody by Streptococcus mutans. Infect Immun 63:1940–1946Google Scholar
  31. Lee SF, Progulske-Fox A, Bleiweis AS (1988) Molecular cloning and expression of a Streptococcus mutans major surface protein antigen, P1 (I/II), in Escherichia coli. Infect Immun 56:2114–2119Google Scholar
  32. Lee SF, Progulske-Fox A, Erdos GW, Piacentini DA, Ayakawa GY, Crowley PJ, Bleiweis AS (1989) Construction and characterization of isogenic mutants of Streptococcus mutans deficient in major surface protein antigen P1 (I/II). Infect Immun 57:3306–3313Google Scholar
  33. Loimaranta V, Jakubovics NS, Hytonen J, Finne J, Jenkinson HF, Stromberg N (2005) Fluid- or surface-phase human salivary scavenger protein gp340 exposes different bacterial recognition properties. Infect Immun 73:2245–2252. doi: 10.1128/IAI.73.4.2245-2252.2005 CrossRefGoogle Scholar
  34. McArthur WP, Rhodin NR, Seifert TB, Oli MW, Robinette RA, Demuth DR, Brady LJ (2007) Characterization of epitopes recognized by anti-Streptococcus mutans P1 monoclonal antibodies. FEMS Immunol Med Microbiol 50:342–353. doi: 10.1111/j.1574-695X.2007.00260.x CrossRefGoogle Scholar
  35. Nygaard R, Romaniuk JAH, Rice DM, Cegelski L (2015) Spectral Snapshots of bacterial cell-wall composition and the influence of antibiotics by whole-cell NMR. Biophys J 108:1380–1389. doi: 10.1016/j.bpj.2015.01.037 CrossRefGoogle Scholar
  36. Okahashi N, Sasakawa C, Yoshikawa M, Hamada S, Koga T (1989a) Cloning of a surface protein antigen gene from serotype c Streptococcus mutans. Mol Microbiol 3:221–228CrossRefGoogle Scholar
  37. Okahashi N, Sasakawa C, Yoshikawa M, Hamada S, Koga T (1989b) Molecular characterization of a surface protein antigen gene from serotype c Streptococcus mutans, implicated in dental caries. Mol Microbiol 3:673–678CrossRefGoogle Scholar
  38. Oli MW, McArthur WP, Brady LJ (2006) A whole cell BIAcore assay to evaluate P1-mediated adherence of Streptococcus mutans to human salivary agglutinin and inhibition by specific antibodies. J Microbiol Methods 65:503–511. doi: 10.1016/j.mimet.2005.09.011 CrossRefGoogle Scholar
  39. Oli MW et al (2012) Functional amyloid formation by Streptococcus mutans. Microbiology 158:2903–2916. doi: 10.1099/mic.0.060855-0 CrossRefGoogle Scholar
  40. Reichhardt MP et al (2014) The salivary scavenger and agglutinin in early life: diverse roles in amniotic fluid and in the infant intestine. J Immunol 193:5240–5248. doi: 10.4049/jimmunol.1401631 CrossRefGoogle Scholar
  41. Reichhardt C, Fong JC, Yildiz F, Cegelski L (2015) Characterization of the Vibrio cholerae extracellular matrix: a top-down solid-state NMR approach. Biochim Biophys Acta 1848:378–383. doi: 10.1016/j.bbamem.2014.05.030 CrossRefGoogle Scholar
  42. Russell MW, Bergmeier LA, Zanders ED, Lehner T (1980a) Protein antigens of Streptococcus mutans: purification and properties of a double antigen and its protease-resistant component. Infect Immun 28:486–493Google Scholar
  43. Russell MW, Zanders ED, Bergmeier LA, Lehner T (1980b) Affinity purification and characterization of protease-susceptible antigen I of Streptococcus mutans. Infect Immun 29:999–1006Google Scholar
  44. Russell MW, Childers NK, Michalek SM, Smith DJ, Taubman MA (2004) A Caries Vaccine? The state of the science of immunization against dental caries. Caries Res 38:230–235. doi: 10.1159/000077759 CrossRefGoogle Scholar
  45. Saldana Z, Xicohtencatl-Cortes J, Avelino F, Phillips AD, Kaper JB, Puente JL, Giron JA (2009) Synergistic role of curli and cellulose in cell adherence and biofilm formation of attaching and effacing Escherichia coli and identification of Fis as a negative regulator of curli. Environ Microbiol 11:992–1006. doi: 10.1111/j.1462-2920.2008.01824.x CrossRefGoogle Scholar
  46. Schaefer J, Stejskal EO (1976) Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle. J Am Chem Soc 98:1031–1032CrossRefGoogle Scholar
  47. Schneewind O, Missiakas DM (2012) Protein secretion and surface display in Gram-positive bacteria. Philos Trans R Soc Lond B Biol Sci 367:1123–1139. doi: 10.1098/rstb.2011.0210 CrossRefGoogle Scholar
  48. Syed AK, Boles BR (2014) Fold modulating function: bacterial toxins to functional amyloids. Front Microbiol 5:401. doi: 10.3389/fmicb.2014.00401 CrossRefGoogle Scholar
  49. Terleckyj B, Shockman GD (1975) Amino acid requirements of Streptococcus mutans and other oral streptococci. Infect Immun 11:656–664Google Scholar
  50. Terleckyj B, Willett NP, Shockman GD (1975) Growth of several cariogenic strains of oral streptococci in a chemically defined medium. Infect Immun 11:649–655Google Scholar
  51. Troffer-Charlier N, Ogier J, Moras D, Cavarelli J (2002) Crystal structure of the V-region of Streptococcus mutans antigen I/II at 2.4 A resolution suggests a sugar preformed binding site. J Mol Biol 318:179–188. doi: 10.1016/S0022-2836(02)00025-6 CrossRefGoogle Scholar
  52. Tuncbag N, Gursoy A, Nussinov R, Keskin O (2011) Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM. Nat Protoc 6:1341–1354. doi: 10.1038/nprot.2011.367 CrossRefGoogle Scholar
  53. Wang X, Hammer ND, Chapman MR (2008) The molecular basis of functional bacterial amyloid polymerization and nucleation. J Biol Chem 283:21530–21539. doi: 10.1074/jbc.M800466200 CrossRefGoogle Scholar
  54. Yan H (2013) Salivary IgA enhancement strategy for development of a nasal-spray anti-caries mucosal vaccine. Sci China Life Sci 56:406–413. doi: 10.1007/s11427-013-4473-5 CrossRefGoogle Scholar
  55. Zhang S, Green NM, Sitkiewicz I, Lefebvre RB, Musser JM (2006) Identification and characterization of an antigen I/II family protein produced by group A Streptococcus. Infect Immun 74:4200–4213. doi: 10.1128/IAI.00493-06 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Wenxing Tang
    • 1
    • 2
  • Avni Bhatt
    • 1
  • Adam N. Smith
    • 3
  • Paula J. Crowley
    • 2
  • L. Jeannine Brady
    • 2
    Email author
  • Joanna R. Long
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular Biology, College of MedicineUniversity of FloridaGainesvilleUSA
  2. 2.Department of Oral Biology, College of DentistryUniversity of FloridaGainesvilleUSA
  3. 3.Department of Chemistry, College of Liberal Arts and SciencesUniversity of FloridaGainesvilleUSA

Personalised recommendations