Advertisement

Journal of Biomolecular NMR

, Volume 63, Issue 3, pp 299–307 | Cite as

Improved validation of IDP ensembles by one-bond Cα–Hα scalar couplings

  • Vytautas Gapsys
  • Raghavendran L. Narayanan
  • ShengQi Xiang
  • Bert L. de Groot
  • Markus ZweckstetterEmail author
Article

Abstract

Intrinsically disordered proteins (IDPs) are best described by ensembles of conformations and a variety of approaches have been developed to determine IDP ensembles. Because of the large number of conformations, however, cross-validation of the determined ensembles by independent experimental data is crucial. The 1JCαHα coupling constant is particularly suited for cross-validation, because it has a large magnitude and mostly depends on the often less accessible dihedral angle ψ. Here, we reinvestigated the connection between 1JCαHα values and protein backbone dihedral angles. We show that accurate amino-acid specific random coil values of the 1JCαHα coupling constant, in combination with a reparameterized empirical Karplus-type equation, allow for reliable cross-validation of molecular ensembles of IDPs.

Keywords

NMR Intrinsically disordered protein Scalar coupling Ensemble 

Notes

Acknowledgments

We thank Eckhard Mandelkow and Jacek Biernat for the Tau sample. This work was in part supported by the DFG through ZW71/8-1.

References

  1. Allison JR, Varnai P, Dobson CM, Vendruscolo M (2009) Determination of the free energy landscape of α-synuclein using spin label nuclear magnetic resonance measurements. J Am Chem Soc 131:18314–18326. doi: 10.1021/Ja904716h CrossRefGoogle Scholar
  2. Ball KA, Phillips AH, Nerenberg PS, Fawzi NL, Wemmer DE, Head-Gordon T (2011) Homogeneous and heterogeneous tertiary structure ensembles of amyloid-β peptides. Biochemistry 50:7612–7628. doi: 10.1021/bi200732x CrossRefGoogle Scholar
  3. Barfield M, Johnston MD (1973) Solvent dependence of nuclear spin–spin coupling-constants. Chem Rev 73:53–73. doi: 10.1021/Cr60281a004 CrossRefGoogle Scholar
  4. Bernado P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI (2007) Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc 129:5656–5664. doi: 10.1021/ja069124n CrossRefGoogle Scholar
  5. Billeter M, Neri D, Otting G, Qian YQ, Wuthrich K (1992) Precise vicinal coupling constants 3JHN α in proteins from nonlinear fits of J-modulated [15N, 1H]-COSY experiments. J Biomol NMR 2:257–274CrossRefGoogle Scholar
  6. Chattopadhyaya R, Meador WE, Means AR, Quiocho FA (1992) Calmodulin structure refined at 1.7 A resolution. J Mol Biol 228:1177–1192CrossRefGoogle Scholar
  7. Choy WY, Forman-Kay JD (2001) Calculation of ensembles of structures representing the unfolded state of an SH3 domain. J Mol Biol 308:1011–1032. doi: 10.1006/jmbi.2001.4750 CrossRefGoogle Scholar
  8. Cleveland DW, Hwo SY, Kirschner MW (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116:227–247CrossRefGoogle Scholar
  9. Edison AS, Markley JL, Weinhold F (1994a) Calculations of one-, two- and three-bond nuclear spin–spin couplings in a model peptide and correlations with experimental data. J Biomol NMR 4:519–542CrossRefGoogle Scholar
  10. Edison AS, Weinhold F, Westler WM, Markley JL (1994b) Estimates of phi and psi torsion angles in proteins from one-, two- and three-bond nuclear spin–spin couplings: application to staphylococcal nuclease. J Biomol NMR 4:543–551CrossRefGoogle Scholar
  11. Egli H, Vonphilipsborn W (1981) C-13-Nmr Spectroscopy.29. Conformational dependence of one-bond C-α, H spin coupling in cyclic-peptides. Helv Chim Acta 64:976–988. doi: 10.1002/hlca.19810640404 CrossRefGoogle Scholar
  12. Fawzi NL, Phillips AH, Ruscio JZ, Doucleff M, Wemmer DE, Head-Gordon T (2008) Structure and dynamics of the Aβ(21–30) peptide from the interplay of NMR experiments and molecular simulations. J Am Chem Soc 130:6145–6158. doi: 10.1021/ja710366c CrossRefGoogle Scholar
  13. Fisher CK, Stultz CM (2011) Constructing ensembles for intrinsically disordered proteins. Curr Opin Struct Biol 21:426–431. doi: 10.1016/j.sbi.2011.04.001 CrossRefGoogle Scholar
  14. Hansen PE (1981) Carbon–hydrogen spin–spin coupling-constants. Prog Nucl Magn Reson Spectrosc 14:175–296. doi: 10.1016/0079-6565(81)80001-5 CrossRefGoogle Scholar
  15. Iakoucheva LM, Brown CJ, Lawson JD, Obradovic Z, Dunker AK (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323:573–584CrossRefGoogle Scholar
  16. Jensen MR, Zweckstetter M, Huang JR, Blackledge M (2014) Exploring free-energy landscapes of intrinsically disordered proteins at atomic resolution using NMR spectroscopy. Chem Rev 114:6632–6660. doi: 10.1021/cr400688u CrossRefGoogle Scholar
  17. Kontaxis G, Clore GM, Bax A (2000) Evaluation of cross-correlation effects and measurement of one-bond couplings in proteins with short transverse relaxation times. J Magn Reson 143:184–196. doi: 10.1006/jmre.1999.1979 CrossRefADSGoogle Scholar
  18. Kopple KD, Ahsan A, Barfield M (1978) Regarding H–C–C(O)–15-N coupling as an indicator of peptide torsional angle. Tetrahedron Lett 3519–3522Google Scholar
  19. Lin S, Fu XD (2007) SR proteins and related factors in alternative splicing. Adv Exp Med Biol 623:107–122CrossRefGoogle Scholar
  20. Lindorff-Larsen K, Trbovic N, Maragakis P, Piana S, Shaw DE (2012) Structure and dynamics of an unfolded protein examined by molecular dynamics simulation. J Am Chem Soc 134:3787–3791. doi: 10.1021/ja209931w CrossRefGoogle Scholar
  21. Mantsyzov AB, Maltsev AS, Ying J, Shen Y, Hummer G, Bax A (2014) A maximum entropy approach to the study of residue-specific backbone angle distributions in α-synuclein, an intrinsically disordered protein. Protein Sci 23:1275–1290. doi: 10.1002/pro.2511 CrossRefGoogle Scholar
  22. Marsh JA, Forman-Kay JD (2012) Ensemble modeling of protein disordered states: experimental restraint contributions and validation. Proteins 80:556–572. doi: 10.1002/prot.23220 CrossRefGoogle Scholar
  23. Marsh JA, Teichmann SA, Forman-Kay JD (2012) Probing the diverse landscape of protein flexibility and binding. Curr Opin Struct Biol 22:643–650. doi: 10.1016/j.sbi.2012.08.008 CrossRefGoogle Scholar
  24. Mittag T, Forman-Kay JD (2007) Atomic-level characterization of disordered protein ensembles. Curr Opin Struct Biol 17:3–14. doi: 10.1016/j.sbi.2007.01.009 CrossRefGoogle Scholar
  25. Mittag T, Kay LE, Forman-Kay JD (2010) Protein dynamics and conformational disorder in molecular recognition. J Mol Recognit 23:105–116. doi: 10.1002/jmr.961 Google Scholar
  26. Mukrasch MD et al (2009) Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol 7:e34CrossRefGoogle Scholar
  27. Oldfield CJ, Dunker AK (2014) Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem 83:553–584. doi: 10.1146/annurev-biochem-072711-164947 CrossRefGoogle Scholar
  28. Piana S, Klepeis JL, Shaw DE (2014) Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr Opin Struct Biol 24:98–105. doi: 10.1016/j.sbi.2013.12.006 CrossRefGoogle Scholar
  29. Rezaei-Ghaleh N, Blackledge M, Zweckstetter M (2012) Intrinsically disordered proteins: from sequence and conformational properties toward drug discovery. ChemBioChem 13:930–950. doi: 10.1002/cbic.201200093 CrossRefGoogle Scholar
  30. Schmidt JM, Howard MJ, Maestre-Martinez M, Perez CS, Lohr F (2009) Variation in protein C(α)-related one-bond J couplings. Magn Reson Chem 47:16–30. doi: 10.1002/mrc.2337 CrossRefGoogle Scholar
  31. Schwalbe M et al (2014) Predictive atomic resolution descriptions of intrinsically disordered hTau40 and α-synuclein in solution from NMR and small angle scattering. Structure 22:238–249. doi: 10.1016/j.str.2013.10.020 CrossRefGoogle Scholar
  32. Schwalbe M, Kadavath H, Biernat J, Ozenne V, Blackledge M, Mandelkow E, Zweckstetter M (2015) Structural impact of tau phosphorylation at threonine 231. Structure 23(8):1448–1458. doi: 10.1016/j.str.2015.06.002
  33. Tjandra N, Bax A (1997) Measurement of dipolar contributions to 1 J CH splittings from magnetic-field dependence of J modulation in two-dimensional NMR spectra. J Magn Reson 124:512–515. doi: 10.1006/jmre.1996.1088 CrossRefADSGoogle Scholar
  34. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533CrossRefGoogle Scholar
  35. Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11:739–756CrossRefGoogle Scholar
  36. Uversky VN (2011) Flexible nets of malleable guardians: intrinsically disordered chaperones in neurodegenerative diseases. Chem Rev 111:1134–1166. doi: 10.1021/cr100186d CrossRefGoogle Scholar
  37. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246. doi: 10.1146/annurev.biophys.37.032807.125924 CrossRefGoogle Scholar
  38. Vijaykumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 a resolution. J Mol Biol 194:531–544. doi: 10.1016/0022-2836(87)90679-6 CrossRefGoogle Scholar
  39. Vuister GW, Bax A (1993) Quantitative J correlation—a new approach for measuring homonuclear 3-bond J(H(N)H(α) coupling-constants in N-15-enriched proteins. J Am Chem Soc 115:7772–7777CrossRefGoogle Scholar
  40. Vuister GW, Delaglio F, Bax A (1993) The use of 1JCαHα coupling constants as a probe for protein backbone conformation. J Biomol NMR 3:67–80Google Scholar
  41. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure- function paradigm. J Mol Biol 293:321–331CrossRefGoogle Scholar
  42. Xiang S et al (2013) Phosphorylation drives a dynamic switch in serine/arginine-rich proteins. Structure 21:2162–2174. doi: 10.1016/j.str.2013.09.014 CrossRefGoogle Scholar
  43. Zweckstetter M, Bax A (2001) Single-step determination of protein substructures using dipolar couplings: aid to structural genomics. J Am Chem Soc 123:9490–9491CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Vytautas Gapsys
    • 1
  • Raghavendran L. Narayanan
    • 2
  • ShengQi Xiang
    • 2
  • Bert L. de Groot
    • 1
  • Markus Zweckstetter
    • 2
    • 3
    • 4
    Email author
  1. 1.Computational Biomolecular Dynamics GroupMax Planck Institute for Biophysical ChemistryGöttingenGermany
  2. 2.Department for NMR-Based Structural BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
  3. 3.German Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
  4. 4.Center for Nanoscale Microscopy and Molecular Physiology of the BrainUniversity Medical Center GöttingenGöttingenGermany

Personalised recommendations