Journal of Biomolecular NMR

, Volume 63, Issue 2, pp 125–139 | Cite as

AFNMR: automated fragmentation quantum mechanical calculation of NMR chemical shifts for biomolecules



We evaluate the performance of the automated fragmentation quantum mechanics/molecular mechanics approach (AF-QM/MM) on the calculation of protein and nucleic acid NMR chemical shifts. The AF-QM/MM approach models solvent effects implicitly through a set of surface charges computed using the Poisson–Boltzmann equation, and it can also be combined with an explicit solvent model through the placement of water molecules in the first solvation shell around the solute; the latter substantially improves the accuracy of chemical shift prediction of protons involved in hydrogen bonding with solvent. We also compare the performance of AF-QM/MM on proteins and nucleic acids with two leading empirical chemical shift prediction programs SHIFTS and SHIFTX2. Although the empirical programs outperform AF-QM/MM in predicting chemical shifts, the differences are in some cases small, and the latter can be applied to chemical shifts on biomolecules which are outside the training set employed by the empirical programs, such as structures containing ligands, metal centers, and non-standard residues. The AF-QM/MM described here is implemented in version 5 of the SHIFTS software, and is fully automated, so that only a structure in PDB format is required as input.


Fragment Density functional theory Chemical shift prediction AF-QM/MM NMR 


  1. Arnold WD, Oldfield E (2000) The chemical nature of hydrogen bonding in proteins via NMR: J-couplings, chemical shifts, and AIM theory. J Am Chem Soc 122:12835–12841CrossRefGoogle Scholar
  2. Case DA (2013) Chemical shifts in biomolecules. Curr Opin Struct Biol 23:172–176CrossRefGoogle Scholar
  3. Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA (2014) AMBER 14. University of California, San FranciscoGoogle Scholar
  4. Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci USA 104:9615–9620CrossRefADSGoogle Scholar
  5. Chien CY, Tejero R, Huang YP, Zimmerman DE, Rios CB, Krug RM, Montelione GT (1997) A novel RNA-binding motif in influenza A virus non-structural protein 1. Nat Struct Biol 4:891–895CrossRefGoogle Scholar
  6. Cromsigt J, Hilbers CW, Wijmenga SS (2001) Prediction of proton chemical shifts in RNA—their use in structure refinement and validation. J Biomol NMR 21:11–29CrossRefGoogle Scholar
  7. Cui Q, Karplus M (2000) Molecular properties from combined QM/MM methods. 2. Chemical shifts in large molecules. J Phys Chem B 104:3721–3743CrossRefGoogle Scholar
  8. de Dios AC, Pearson JG, Oldfield E (1993) Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach. Science 260:1491–1496CrossRefADSGoogle Scholar
  9. Dracinsky M, Möller HM, Exner TE (2013) Conformational sampling by Ab initio molecular dynamics simulations improves NMR chemical shift predictions. J Chem Theory Comput 9:3806–3815CrossRefGoogle Scholar
  10. Exner TE, Frank A, Onila I, Möller HM (2012) Toward the quantum chemical calculation of NMR chemical shifts of proteins. 3. conformational sampling and explicit solvents model. J Chem Theory Comput 8:4818–4827CrossRefGoogle Scholar
  11. Flaig D, Beer M, Ochsenfeld C (2012) Convergence of electronic structure with the size of the QM region: example of QM/MM NMR shieldings. J Chem Theory Comput 8:2260–2271CrossRefGoogle Scholar
  12. Flaig D, Maurer M, Hanni M, Braunger K, Kick L, Thubauville M, Ochsenfeld C (2014) Benchmarking hydrogen and carbon NMR chemical shifts at HF, DFT, and MP2 levels. J Chem Theory Comput 10:572–578CrossRefGoogle Scholar
  13. Frank A, Onila I, Möller HM, Exner TE (2011) Toward the quantum chemical calculation of nuclear magnetic resonance chemical shifts of proteins. Proteins 79:2189–2202CrossRefGoogle Scholar
  14. Frank AT, Bae S-H, Stelzer AC (2013) Prediction of RNA H-1 and C-13 chemical shifts: a structure based approach. J Phys Chem B 117:13497–13506CrossRefGoogle Scholar
  15. Frisch MJ, T GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJ, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamao C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople J (2010) Gaussian 09 revision B.01 Gaussian Inc. Wallingford CTGoogle Scholar
  16. Gao Q, Yokojima S, Kohno T, Ishida T, Fedorov DG, Kitaura K, Fujihira M, Nakamura S (2007) Ab initio NMR chemical shift calculations on proteins using fragment molecular orbitals with electrostatic environment. Chem Phys Lett 445:331–339CrossRefADSGoogle Scholar
  17. Gao Q, Yokojima S, Fedorov DG, Kitaura K, Sakurai M, Nakamura S (2010) Fragment-molecular-orbital-method-based ab Initio NMR chemical-shift calculations for large molecular systems. J Chem Theory Comput 6:1428–1444CrossRefGoogle Scholar
  18. Garcia FL, Szyperski T, Dyer JH, Choinowski T, Seedorf U, Hauser H, Wuthrich K (2000) NMR structure of the sterol carrier protein-2: implications for the biological role. J Mol Biol 295:595–603CrossRefGoogle Scholar
  19. Han B, Liu Y, Ginzinger SW, Wishart DS (2011) SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 50:43–57CrossRefGoogle Scholar
  20. Hartman JD, Beran GJO (2014) Fragment-based electronic structure approach for computing nuclear magnetic resonance chemical shifts in molecular crystals. J Chem Theory Comput 10:4862–4872CrossRefGoogle Scholar
  21. He X, Wang B, Merz KM Jr (2009) Protein NMR chemical shift calculations based on the automated fragmentation QM/MM approach. J Phys Chem B 113:10380–10388CrossRefGoogle Scholar
  22. He X, Zhu T, Wang XW, Liu JF, Zhang JZH (2014) Fragment quantum mechanical calculation of proteins and its applications. Acc Chem Res 47:2748–2757CrossRefGoogle Scholar
  23. Helgaker T, Jaszunski M, Ruud K (1999) Ab initio methods for the calculation of NMR shielding and indirect spin-spin coupling constants. Chem Rev 99:293–352CrossRefGoogle Scholar
  24. Imai T, Hiraoka R, Kovalenko A, Hirata F (2007) Locating missing water molecules in protein cavities by the three-dimensional reference interaction site model theory of molecular solvation. Proteins 66:804–813CrossRefGoogle Scholar
  25. Ji C, Mei Y, Zhang JZH (2008) Developing polarized protein-specific charges for protein dynamics: MD free energy calculation of pK(a) shifts for Asp(26)/Asp(20) in thioredoxin. Biophys J 95:1080–1088CrossRefGoogle Scholar
  26. Kohlhoff KJ, Robustelli P, Cavalli A, Salvatella X, Vendruscolo M (2009) Fast and accurate predictions of protein NMR chemical shifts from interatomic distances. J Am Chem Soc 131:13894CrossRefGoogle Scholar
  27. Krylov AI, Gill PMW (2013) Q-Chem: an engine for innovation. WIREs Comput Mol Sci 3:317–326CrossRefGoogle Scholar
  28. Li DW, Brüschweiler R (2012) PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles. J Biomol NMR 54:257–265CrossRefGoogle Scholar
  29. Liu B, Shadrin A, Sheppard C, Mekler V, Xu Y, Severinov K, Matthews S, Wigneshweraraj S (2014) A bacteriophage transcription regulator inhibits bacterial transcription initiation by Sigma-factor displacement. Nucleic Acids Res 42:4294–4305CrossRefGoogle Scholar
  30. Meiler J, Baker D (2003) Rapid protein fold determination using unassigned NMR data. Proc Natl Acad Sci USA 100:15404–15409CrossRefADSGoogle Scholar
  31. Moon S, Case DA (2006) A comparison of quantum chemical models for calculating NMR shielding parameters in peptides: mixed basis set and ONIOM methods combined with a complete basis set extrapolation. J Comput Chem 27:825–836CrossRefGoogle Scholar
  32. Neese F (2012) The ORCA program system. WIREs Comput Mol Sci 2:73–78CrossRefGoogle Scholar
  33. Nozinovic S, Fuertig B, Jonker HRA, Richter C, Schwalbe H (2010) High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucl Acids Res 38:683–694CrossRefGoogle Scholar
  34. Sahakyan AB, Vranken WF, Cavalli A, Vendruscolo M (2011) Using side-chain aromatic proton chemical shifts for a quantitative analysis of protein structures. Angew Chem Int Ed 50:9620–9623CrossRefGoogle Scholar
  35. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. WIREs Comput Mol Sci 3:198–210CrossRefGoogle Scholar
  36. Schafer A, Huber C, Ahlrichs R (1994) Fully optimized contracted gaussian-basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835CrossRefADSGoogle Scholar
  37. Scheurer C, Skrynnikov NR, Lienin SF, Straus SK, Bruschweiler R, Ernst RR (1999) Effects of dynamics and environment on N-15 chemical shielding anisotropy in proteins. A combination of density functional theory, molecular dynamics simulation, and NMR relaxation. J Am Chem Soc 121:4242–4251CrossRefGoogle Scholar
  38. Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert ATB, Slipchenko LV, Levchenko SV, O’Neill DP, DiStasio RA Jr, Lochan RC, Wang T, Beran GJO, Besley NA, Herbert JM, Lin CY, Van Voorhis T, Chien SH, Sodt A, Steele RP, Rassolov VA, Maslen PE, Korambath PP, Adamson RD, Austin B, Baker J, Byrd EFC, Dachsel H, Doerksen RJ, Dreuw A, Dunietz BD, Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata S, Hsu C-P, Kedziora G, Khalliulin RZ, Klunzinger P, Lee AM, Lee MS, Liang W, Lotan I, Nair N, Peters B, Proynov EI, Pieniazek PA, Rhee YM, Ritchie J, Rosta E, Sherrill CD, Simmonett AC, Subotnik JE, Woodcock HL III, Zhang W, Bell AT, Chakraborty AK, Chipman DM, Keil FJ, Warshel A, Hehre WJ, Schaefer HF III, Kong J, Krylov AI, Gill PMW (2006) Head-Gordon MAdvances in methods and algorithms in a modern quantum chemistry program package. Phys Chem Chem Phys 8:3172–3191CrossRefGoogle Scholar
  39. Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105:4685–4690CrossRefADSGoogle Scholar
  40. Shen Y, Vernon R, Baker D, Bax A De (2009) novo protein structure generation from incomplete chemical shift assignments. J Biomol NMR 43:63–78CrossRefGoogle Scholar
  41. Sindhikara DJ, Yoshida N, Hirata F (2012) Placevent: an algorithm for prediction of explicit solvent atom distributionuApplication to HIV-1 protease and F-ATP synthase. J Comput Chem 33:1536–1543CrossRefGoogle Scholar
  42. Sitkoff D, Case DA (1997) Density-functional calculations of proton chemical shifts in model peptides and applications to proteins. Abstr Papers Am Chem Soc 214:234-PHYSGoogle Scholar
  43. Song J, Ji C, Zhang JZH (2013) The critical effect of polarization on the dynamical structure of guanine quadruplex DNA. Phys Chem Chem Phys 15:3846–3854CrossRefGoogle Scholar
  44. Sumowski CV, Hanni M, Schweizer S, Ochsenfeld C (2014) Sensitivity of ab initio vs empirical methods in computing structural effects on nmr chemical shifts for the example of peptides. J Chem Theory Comput 10:122–133CrossRefGoogle Scholar
  45. Tang S, Case DA (2011) Calculation of chemical shift anisotropy in proteins. J Biomol NMR 51:303–312CrossRefGoogle Scholar
  46. Victora A, Möller HM, Exner TE (2014) Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes. Nucl Acids Res 42:e173CrossRefGoogle Scholar
  47. Wang B, Brothers EN, van der Vaart A, Merz KM (2004) Fast semiempirical calculations for nuclear magnetic resonance chemical shifts: a divide-and-conquer approach. J Chem Phys 120:11392–11400CrossRefADSGoogle Scholar
  48. Wang B, He X, Merz KM (2013) Quantum mechanical study of vicinal J spin-spin coupling constants for the protein backbone. J Chem Theory Comput 9:4653–4659CrossRefGoogle Scholar
  49. Wijmenga SS, Kruithof M, Hilbers CW (1997) Analysis of H-1 chemical shifts in DNA: assessment of the reliability of H-1 chemical shift calculations for use in structure refinement. J Biomol NMR 10:337–350CrossRefGoogle Scholar
  50. Williamson MP, Craven CJ (2009) Automated protein structure calculation from NMR data. J Biomol NMR 43:131–143CrossRefGoogle Scholar
  51. Xu XP, Case DA (2001) Automated prediction of (15)N, (13)C(alpha), (13)C(beta) and (13)C chemical shifts in proteins using a density functional database. J Biomol NMR 21:321–333CrossRefGoogle Scholar
  52. Yoshida N, Phongphanphanee S, Maruyama Y, Imai T, Hirata F (2006) Selective ion-binding by protein probed with the 3D-RISM theory. J Am Chem Soc 128:12042–12043CrossRefGoogle Scholar
  53. Zhang Y, Wu AN, Xu X, Yan YJ (2006) OPBE: a promising density functional for the calculation of nuclear shielding constants. Chem Phys Lett 421:383–388CrossRefADSGoogle Scholar
  54. Zhu T, He X, Zhang JZH (2012) Fragment density functional theory calculation of NMR chemical shifts for proteins with implicit solvation. Phys Chem Chem Phys 14:7837–7845CrossRefGoogle Scholar
  55. Zhu T, Zhang JZH, He X (2013) Automated fragmentation QM/MM calculation of amide proton chemical shifts in proteins with explicit solvent model. J Chem Theory Comput 9:2104–2114CrossRefGoogle Scholar
  56. Zhu T, Zhang JZH, He X (2014) Correction of erroneously packed protein’s side chains in the NMR structure based on ab initio chemical shift calculations. Phys Chem Chem Phys 16:18163–18169CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical Biology and BioMaPS InstituteRutgers UniversityPiscatawayUSA
  2. 2.State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational ScienceEast China Normal UniversityShanghaiChina
  3. 3.NYU-ECNU Center for Computational Chemistry at NYU ShanghaiShanghaiChina

Personalised recommendations