Journal of Biomolecular NMR

, Volume 62, Issue 3, pp 403–409 | Cite as

PPM_One: a static protein structure based chemical shift predictor

Article

Abstract

We mined the most recent editions of the BioMagResDataBank and the protein data bank to parametrize a new empirical knowledge-based chemical shift predictor of protein backbone atoms using either a linear or an artificial neural network model. The resulting chemical shift predictor PPM_One accepts a single static 3D structure as input and emulates the effect of local protein dynamics via interatomic steric contacts. Furthermore, the chemical shift prediction was extended to most side-chain protons and it is found that the prediction accuracy is at a level allowing an independent assessment of stereospecific assignments. For a previously established set of test proteins some overall improvement was achieved over current top-performing chemical shift prediction programs.

Keyword

Protein chemical shift prediction Physics-based predictor Backbone and side-chain chemical shifts Neural network Database analysis 

Supplementary material

10858_2015_9958_MOESM1_ESM.pdf (186 kb)
Supplementary material 1 (PDF 186 kb)

References

  1. Berjanskii M, Wishart DS (2006) NMR: prediction of protein flexibility. Nat Protoc 1:683–688CrossRefGoogle Scholar
  2. Berman HM et al (2000) The protein data bank. Nucleic Acids Res 28:235–242ADSCrossRefGoogle Scholar
  3. Borowski P (2012) Conformational analysis of the chemical shifts for molecules containing diastereotopic methylene protons. J Magn Reson 214:1–9ADSCrossRefGoogle Scholar
  4. Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci USA 104:9615–9620ADSCrossRefGoogle Scholar
  5. Haigh CW, Mallion RB (1972) New tables of ring current shielding in proton magnetic-resonance. Org Magn Reson 4:203CrossRefGoogle Scholar
  6. Haigh CW, Mallion RB (1979) Ring current theories in nuclear magnetic-resonance. Prog Nucl Magn Reson Spectrosc 13:303–344CrossRefGoogle Scholar
  7. Han B, Liu YF, Ginzinger SW, Wishart DS (2011) SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 50:43–57CrossRefGoogle Scholar
  8. Kohlhoff KJ, Robustelli P, Cavalli A, Salvatella X, Vendruscolo M (2009) Fast and accurate predictions of protein NMR chemical shifts from interatomic distances. J Am Chem Soc 131:13894CrossRefGoogle Scholar
  9. Lehtivarjo J, Hassinen T, Korhonen SP, Perakyla M, Laatikainen R (2009) 4D prediction of protein H-1 chemical shifts. J Biomol NMR 45:413–426CrossRefGoogle Scholar
  10. Lehtivarjo J, Tuppurainen K, Hassinen T, Laatikainen R, Perakyla M (2012) Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction. J Biomol NMR 52:257–267CrossRefGoogle Scholar
  11. Li DW, Brüschweiler R (2010) NMR-based protein potentials. Angew Chem Int Ed 49:6778–6780CrossRefGoogle Scholar
  12. Li DW, Brüschweiler R (2011) Iterative optimization of molecular mechanics force fields from NMR data of full-length proteins. J Chem Theory Comput 7:1773–1782CrossRefGoogle Scholar
  13. Li DW, Brüschweiler R (2009) All-atom contact model for understanding protein dynamics from crystallographic B-factors. Biophys J 96:3074–3081CrossRefGoogle Scholar
  14. Li DW, Brüschweiler R (2012) PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles. J Biomol NMR 54:257–265CrossRefGoogle Scholar
  15. Markwick PRL, Cervantes CF, Abel BL, Komives EA, Blackledge M, McCammon JA (2010) Enhanced conformational space sampling improves the prediction of chemical shifts in proteins. J Am Chem Soc 132:1220CrossRefGoogle Scholar
  16. McConnell HM (1957) Theory of nuclear magnetic shielding in molecules. 1. Long-range dipolar shielding of protons. J Chem Phys 27:226–229ADSCrossRefGoogle Scholar
  17. Meiler J (2003) PROSHIFT: protein chemical shift prediction using artificial neural networks. J Biomol NMR 26:25–37CrossRefGoogle Scholar
  18. Neal S, Nip AM, Zhang HY, Wishart DS (2003) Rapid and accurate calculation of protein H-1, C-13 and N-15 chemical shifts. J Biomol NMR 26:215–240CrossRefGoogle Scholar
  19. Nilges M, Clore GM, Gronenborn AM (1990) 1H-NMR stereospecific assignments by conformational data-base searches. Biopolymers 29:813–822CrossRefGoogle Scholar
  20. Osapay K, Case DA (1991) A new analysis of proton chemical-shifts in proteins. J Am Chem Soc 113:9436–9444CrossRefGoogle Scholar
  21. Robustelli P, Stafford KA, Palmer AG (2012) Interpreting protein structural dynamics from NMR chemical shifts. J Am Chem Soc 134:6365–6374CrossRefGoogle Scholar
  22. Rosato A et al (2012) Blind testing of routine, fully automated determination of protein structures from NMR data. Structure 20:227–236CrossRefGoogle Scholar
  23. Sahakyan AB, Vranken WF, Cavalli A, Vendruscolo M (2011a) Structure-based prediction of methyl chemical shifts in proteins. J Biomol NMR 50:331–346CrossRefGoogle Scholar
  24. Sahakyan AB, Vranken WF, Cavalli A, Vendruscolo M (2011b) Using side-chain aromatic proton chemical shifts for a quantitative analysis of protein structures. Angew Chem Int Ed 50:9620–9623CrossRefGoogle Scholar
  25. Shen Y, Bax A (2007) Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. J Biomol NMR 38:289–302CrossRefGoogle Scholar
  26. Shen Y, Bax A (2010) SPARTA plus: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J Biomol NMR 48:13–22CrossRefGoogle Scholar
  27. Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241CrossRefGoogle Scholar
  28. Shen Y et al (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105:4685–4690ADSCrossRefGoogle Scholar
  29. Shen Y, Delaglio F, Cornilescu G, Bax A (2009a) TALOS plus: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223CrossRefGoogle Scholar
  30. Shen Y, Vernon R, Baker D, Bax A (2009b) De novo protein structure generation from incomplete chemical shift assignments. J Biomol NMR 43:63–78CrossRefGoogle Scholar
  31. Ulrich EL et al (2008) BioMagResBank. Nucleic Acids Res 36:D402–D408CrossRefGoogle Scholar
  32. Wang YJ, Jardetzky O (2002) Probability-based protein secondary structure identification using combined NMR chemical-shift data. Protein Sci 11:852–861CrossRefGoogle Scholar
  33. Williamson MP, Asakura T (1992) The application of 1H NMR chemical shift calculations to diastereotopic groups in proteins. FEBS Lett 302:185–188CrossRefGoogle Scholar
  34. Wishart DS, Case DA (2001) Use of chemical shifts in macromolecular structure determination. Method Enzymol 338:3–34CrossRefGoogle Scholar
  35. Wishart DS, Sykes BD (1994) The C-13 chemical-shift index—a simple method for the identification of protein secondary structure using C-13 chemical-shift data. J Biomol NMR 4:171–180Google Scholar
  36. Wishart DS, Watson MS, Boyko RF, Sykes BD (1997) Automated H-1 and C-13 chemical shift prediction using the BioMagResBank. J Biomol NMR 10:329–336CrossRefGoogle Scholar
  37. Wishart DS, Arndt D, Berjanskii M, Tang P, Zhou J, Lin G (2008) CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data. Nucleic Acids Res 36:W496–W502CrossRefGoogle Scholar
  38. Xu XP, Case DA (2001) Automated prediction of 15 N, 13Calpha, 13Cbeta and 13C′ chemical shifts in proteins using a density functional database. J Biomol NMR 21:321–333CrossRefGoogle Scholar
  39. Xu XP, Case DA (2002) Probing multiple effects on 15 N, 13C alpha, 13C beta, and 13C′ chemical shifts in peptides using density functional theory. Biopolymers 65:408–423CrossRefGoogle Scholar
  40. Xue Y, Ward JM, Yuwen TR, Podkorytov IS, Skrynnikov NR (2012) Microsecond time-scale conformational exchange in proteins: using Long molecular dynamics trajectory to simulate NMR relaxation dispersion data. J Am Chem Soc 134:2555–2562CrossRefGoogle Scholar
  41. Zhang F, Brüschweiler R (2002) Contact model for the prediction of NMR N–H order parameters in globular proteins. J Am Chem Soc 124:12654–12655CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Campus Chemical Instrument CenterThe Ohio State UniversityColumbusUSA
  2. 2.Department of Chemistry and BiochemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations