Advertisement

Journal of Biomolecular NMR

, Volume 62, Issue 3, pp 373–385 | Cite as

An economic approach to efficient isotope labeling in insect cells using homemade 15N-, 13C- and 2H-labeled yeast extracts

  • Christian Opitz
  • Shin Isogai
  • Stephan Grzesiek
Article

Abstract

Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein 15N and 13C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor.

Keywords

Abelson kinase GPCR GFP Beta-1 adrenergic receptor Baculovirus Heteronuclear NMR 

Notes

Acknowledgments

We gratefully acknowledge Dr. L. Nisius for initial experiments, Dr. S. Jackson for the gift of the original E. coli expression vector of trGFPuv as well as Drs. W. Jahnke, A. Gossert, A. Strauss, L. Skora, G. Schertler, D. Veprintsev, X. Deupi, K. Ballmer-Hofer, T. Maier for very helpful discussions, and I. Hertel for expert help in the preparation of yeast extracts. This work was supported by Swiss National Science Foundation Grants 31-149927 and Sinergia CRSII3-141898.

Supplementary material

10858_2015_9954_MOESM1_ESM.pdf (173 kb)
The electronic supplementary material contains the analysis of isotope incorporation of free amino acids in yeastolates, the gradient elution protocol used for amino acid analysis by LC/MS, as well as pulse sequences and procedures for the quantitative NMR analysis of 13C’ and 13Cα enrichment in proteins. (PDF 172 kb)

References

  1. Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293Google Scholar
  2. Doverskog M, Han L, Häggström L (1998) Cystine/cysteine metabolism in cultured Sf9 cells: influence of cell physiology on biosynthesis, amino acid uptake and growth. Cytotechnology 26:91–102. doi: 10.1023/A:1007963003607 CrossRefGoogle Scholar
  3. Drews M, Doverskog M, Ohman L et al (2000) Pathways of glutamine metabolism in Spodoptera frugiperda (Sf9) insect cells: evidence for the presence of the nitrogen assimilation system, and a metabolic switch by 1H/15N NMR. J Biotechnol 78:23–37CrossRefGoogle Scholar
  4. Egorova-Zachernyuk TA, Bosman GJCGM, Pistorius AMA, DeGrip WJ (2009) Production of yeastolates for uniform stable isotope labelling in eukaryotic cell culture. Appl Microbiol Biotechnol 84:575–581. doi: 10.1007/s00253-009-2063-z CrossRefGoogle Scholar
  5. Egorova-Zachernyuk TA, Bosman GJCGM, DeGrip WJ, Shvets VI (2010) Stable isotope labelling of human histamine receptor H1R: prospects for structure-based drug design. Dokl Biochem Biophys 433:164–167. doi: 10.1134/S160767291004006X CrossRefGoogle Scholar
  6. Garrett D, Powers R, Gronenborn A, Clore G (1991) A common sense approach to peak picking in two-, three-, and four dimensional spectra using automatic computer analysis of contour diagrams. J Magn Reson 95:214–220ADSGoogle Scholar
  7. Goddard T, Kneller D (2008) SPARKY 3. University of California, San FranciscoGoogle Scholar
  8. Grzesiek S, Vuister G, Bax A (1993) A simple and sensitive experiment for measurement of JCC couplings between backbone carbonyl and methyl carbons in isotopically enriched proteins. J Biomol NMR 3:487–493. doi: 10.1007/BF00176014 Google Scholar
  9. Hansen AP, Petros AM, Mazar AP et al (1992) A practical method for uniform isotopic labeling of recombinant proteins in mammalian cells. Biochemistry 31:12713–12718. doi: 10.1021/bi00166a001 CrossRefGoogle Scholar
  10. Huang J-R, Craggs TD, Christodoulou J, Jackson SE (2007) Stable intermediate states and high energy barriers in the unfolding of GFP. J Mol Biol 370:356–371. doi: 10.1016/j.jmb.2007.04.039 CrossRefGoogle Scholar
  11. Khan F, Stott K, Jackson S (2003) 1H,15N and 13C backbone assignment of the green fluorescent protein (GFP). J Biomol NMR 26:281–282. doi: 10.1023/A:1023817001154 CrossRefGoogle Scholar
  12. Kofuku Y, Ueda T, Okude J et al (2014) Functional dynamics of deuterated β2 -adrenergic receptor in lipid bilayers revealed by NMR spectroscopy. Angew Chem Int Ed Engl 53:13376–13379. doi: 10.1002/anie.201406603 CrossRefGoogle Scholar
  13. Kragl U, Godde A, Wandrey C et al (1993) Repetitive batch as an efficient method for preparative-scale enzymatic-synthesis of 5-azido-neuraminic acid and N-15-l-glutamic acid. Tetrahedron-Asymmetr 4:1193–1202CrossRefGoogle Scholar
  14. Martini AEV, Miller MW, Martini A (1979) Amino acid composition of whole cells of different yeasts. J Agric Food Chem 27:982–984. doi: 10.1021/jf60225a040 CrossRefGoogle Scholar
  15. Meola A, Deville C, Jeffers SA et al (2014) Robust and low cost uniform 15N-labeling of proteins expressed in Drosophila S2 cells and Spodoptera frugiperda Sf9 cells for NMR applications. J Struct Biol 188:71–78CrossRefGoogle Scholar
  16. Miller JL, Tate CG (2011) Engineering an ultra-thermostable β(1)-adrenoceptor. J Mol Biol 413:628–638. doi: 10.1016/j.jmb.2011.08.057 CrossRefGoogle Scholar
  17. O’Reilly DR, Miller LK, Luckow VA (1994) Baculovirus expression vectors: a laboratory manual. Oxford University Press, OxfordGoogle Scholar
  18. Rosen MK, Gardner KH, Willis RC et al (1996) Selective methyl group protonation of perdeuterated proteins. J Mol Biol 263:627–636. doi: 10.1006/jmbi.1996.0603 CrossRefGoogle Scholar
  19. Sklenar V, Bax A (1987) Spin-echo water suppression for the generation of pure-phase two-dimensional NMR-spectra. J Magn Reson 74:469–479ADSGoogle Scholar
  20. Strauss A, Bitsch F, Cutting B et al (2003) Amino-acid-type selective isotope labeling of proteins expressed in Baculovirus-infected insect cells useful for NMR studies. J Biomol NMR 26:367–372CrossRefGoogle Scholar
  21. Strauss A, Bitsch F, Fendrich G et al (2005) Efficient uniform isotope labeling of Abl kinase expressed in Baculovirus-infected insect cells. J Biomol NMR 31:343–349. doi: 10.1007/s10858-005-2451-3 CrossRefGoogle Scholar
  22. Vajpai N, Strauss A, Fendrich G et al (2008a) Solution conformations and dynamics of ABL kinase-inhibitor complexes determined by NMR substantiate the different binding modes of imatinib/nilotinib and dasatinib. J Biol Chem 283:18292–18302. doi: 10.1074/jbc.M801337200 CrossRefGoogle Scholar
  23. Vajpai N, Strauss A, Fendrich G et al (2008b) Backbone NMR resonance assignment of the Abelson kinase domain in complex with imatinib. Biomol NMR Assign 2:41–42. doi: 10.1007/s12104-008-9079-7 CrossRefGoogle Scholar
  24. Warne T, Serrano-Vega MJ, Baker JG et al (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491. doi: 10.1038/nature07101 ADSCrossRefGoogle Scholar
  25. Weiss SA, Smith GC, Kalter SS, Vaughn JL (1981) Improved method for the production of insect cell cultures in large volume. In Vitro 17:495–502. doi: 10.1007/BF02633510 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Christian Opitz
    • 1
  • Shin Isogai
    • 1
  • Stephan Grzesiek
    • 1
  1. 1.Focal Area Structural Biology and Biophysics, BiozentrumUniversity of BaselBaselSwitzerland

Personalised recommendations