Journal of Biomolecular NMR

, Volume 62, Issue 3, pp 239–245 | Cite as

Methyl labeling and TROSY NMR spectroscopy of proteins expressed in the eukaryote Pichia pastoris

  • Lindsay Clark
  • Jacob A. Zahm
  • Rustam Ali
  • Maciej Kukula
  • Liangqiao Bian
  • Steven M. Patrie
  • Kevin H. Gardner
  • Michael K. Rosen
  • Daniel M. RosenbaumEmail author


13C Methyl TROSY NMR spectroscopy has emerged as a powerful method for studying the dynamics of large systems such as macromolecular assemblies and membrane proteins. Specific 13C labeling of aliphatic methyl groups and perdeuteration has been limited primarily to proteins expressed in E. coli, preventing studies of many eukaryotic proteins of physiological and biomedical significance. We demonstrate the feasibility of efficient 13C isoleucine δ1-methyl labeling in a deuterated background in an established eukaryotic expression host, Pichia pastoris, and show that this method can be used to label the eukaryotic protein actin, which cannot be expressed in bacteria. This approach will enable NMR studies of previously intractable targets.


Methyl labeling TROSY Eukaryotic expression system Pichia pastoris Deuteration Actin 



Funding was provided by a National Science Foundation Predoctoral Fellowship (Grant No. 1000136529 to L.C.), the Welch Foundation (I-1770 to D.M.R, I-1544 to M.K.R., I-1424 to K.H.G.), the Searle Scholars Program (D.M.R), a Packard Foundation Fellowship (D.M.R), the National Institutes of Health (T32 GM008297 supporting J.Z., R01 GM106239 to K.H.G., R01-GM56322 to M.K.R) and the Howard Hughes Medical Institute (M.K.R.).

Supplementary material

10858_2015_9939_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2470 kb)


  1. Cereghino JL, Cregg JM (2000) Heterologous expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24(1):45–66CrossRefGoogle Scholar
  2. Chen C-Y, Cheng C-H, Chen Y-C, Lee J-C, Chou S-H, Huang W, Chuang W-J (2005) Preparation of amino-acid-type selective isotope labeling of protein expressed in Pichia pastoris. Proteins 62(1):279–287CrossRefGoogle Scholar
  3. Ecken J, Müller M, Lehman W, Manstein DJ, Penczek PA, Raunser S (2015) Structure of the F-actin–tropomyosin complex. Nature 519(7541):114–117CrossRefADSGoogle Scholar
  4. Fan Y, Shi L, Ladizhansky V, Brown LS (2011) Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment. J Biomol NMR 49(2):151–161CrossRefGoogle Scholar
  5. Fujii T, Iwane AH, Yanagida T, Namba K (2010) Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature 467(7316):724–728CrossRefADSGoogle Scholar
  6. Gardner KH, Kay LE (1997) Production and incorporation of 15 N, 13C, 2H (1H-δ1 methyl) isoleucine into proteins for multidimensional NMR studies. J Am Chem Soc 119(32):7599–7600CrossRefGoogle Scholar
  7. Gardner KH, Rosen MK, Kay LE (1997) Global folds of highly deuterated, methyl-protonated proteins by multidimensional NMR. Biochemistry 36(6):1389–1401CrossRefGoogle Scholar
  8. Gardner KH, Zhang X, Gehring K, Kay LE (1998) Solution NMR Studies of a 42 KDa Escherichia coli maltose binding protein/β-cyclodextrin complex: chemical shift assignments and analysis. J Am Chem Soc 120(45):11738–11748CrossRefGoogle Scholar
  9. Gossert AD, Hinniger A, Gutmann S, Jahnke W, Strauss A, Fernández C (2011) A simple protocol for amino acid type selective isotope labeling in insect cells with improved yields and high reproducibility. J Biomol NMR 51(4):449–456CrossRefGoogle Scholar
  10. Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of Val, Leu, Ile (δ1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR 13(4):369–374CrossRefGoogle Scholar
  11. Hansen AP, Petros AM, Mazar AP, Pederson TM, Rueter A, Fesik SW (1992) A practical method for uniform isotopic labeling of recombinant proteins in mammalian cells. Biochemistry 31(51):12713–12718CrossRefGoogle Scholar
  12. Hino T, Arakawa T, Iwanari H, Yurugi-Kobayashi T, Ikeda-Suno C, Nakada-Nakura Y, Kusano-Arai O, Weyand S, Shimamura T, Nomura N et al (2012) G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482(7384):237–240ADSGoogle Scholar
  13. Kofuku Y, Ueda T, Okude J, Shiraishi Y, Kondo K, Mizumura T, Suzuki S, Shimada I (2014) Functional dynamics of deuterated β2-adrenergic receptor in lipid bilayers revealed by NMR spectroscopy. Angew Chem Int Ed 53(49):13376–13379CrossRefGoogle Scholar
  14. Kudryashov DS, Reisler E (2013) ATP and ADP actin states. Biopolymers 99(4):245–256CrossRefGoogle Scholar
  15. Lee J-Y, Urbatsch IL, Senior AE, Wilkens S (2002) Projection structure of P-glycoprotein by electron microscopy: evidence for a closed conformation of the nucleotide binding domains. J Biol Chem 277(42):40125–40131CrossRefGoogle Scholar
  16. Li Z, Leung W, Yon A, Nguyen J, Perez VC, Vu J, Giang W, Luong LT, Phan T, Salazar KA et al (2010) Secretion and proteolysis of heterologous proteins fused to the Escherichia coli maltose binding protein in Pichia pastoris. Protein Expr Purif 72(1):113–124CrossRefGoogle Scholar
  17. Miyazawa-Onami M, Takeuchi K, Takano T, Sugiki T, Shimada I, Takahashi H (2013) Perdeuteration and methyl-selective (1)H, (13)C-labeling by using a Kluyveromyces lactis expression system. J Biomol NMR 57(3):297–304CrossRefGoogle Scholar
  18. Morgan WD, Kragt A, Feeney J (2000) Expression of deuterium-isotope-labelled protein in the yeast Pichia pastoris for NMR studies. J Biomol NMR 17(4):337–347CrossRefGoogle Scholar
  19. Nair UB, Joel PB, Wan Q, Lowey S, Rould MA, Trybus KM (2008) Crystal structures of monomeric actin bound to cytochalasin D. J Mol Biol 384(4):848–864CrossRefGoogle Scholar
  20. Noguchi TQP, Kanzaki N, Ueno H, Hirose K, Uyeda TQP (2007) A novel system for expressing toxic actin mutants in dictyostelium and purification and characterization of a dominant lethal yeast actin mutant. J Biol Chem 282(38):27721–27727CrossRefGoogle Scholar
  21. Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP et al (2013) The dynamic process of β2-adrenergic receptor activation. Cell 152(3):532–542CrossRefGoogle Scholar
  22. Oda T, Iwasa M, Aihara T, Maéda Y, Narita A (2009) The nature of the globular- to fibrous-actin transition. Nature 457(7228):441–445CrossRefADSGoogle Scholar
  23. Ollerenshaw JE, Tugarinov V, Kay LE (2003) Methyl TROSY: explanation and experimental verification. Magn Reson Chem 41(10):843–852CrossRefGoogle Scholar
  24. Otterbein LR, Graceffa P, Dominguez R (2001) The crystal structure of uncomplexed actin in the ADP state. Science 293(5530):708–711CrossRefGoogle Scholar
  25. Pervushin K, Riek R, Wider G, Wüthrich K (1997) Transverse relaxation-optimized spectroscopy (TROSY) for NMR studies of aromatic spin systems in 13C-labeled proteins. Proc Natl Acad Sci USA 94(23):12366–12371CrossRefADSGoogle Scholar
  26. Pollard TD, Cooper JA (1986) Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem 55:987–1035CrossRefGoogle Scholar
  27. Rosen MK, Gardner KH, Willis RC, Parris WE, Pawson T, Kay LE (1996) Selective methyl group protonation of perdeuterated proteins. J Mol Biol 263(5):627–636CrossRefGoogle Scholar
  28. Rould MA, Wan Q, Joel PB, Lowey S, Trybus KM (2006) Crystal structures of expressed non-polymerizable monomeric actin in the ADP and ATP states. J Biol Chem 281(42):31909–31919CrossRefGoogle Scholar
  29. Ruschak AM, Kay LE (2010) Methyl groups as probes of supra-molecular structure, dynamics and function. J Biomol NMR 46(1):75–87CrossRefGoogle Scholar
  30. Schmid MF, Sherman MB, Matsudaira P, Chiu W (2004) Structure of the acrosomal bundle. Nature 431(7004):104–107CrossRefADSGoogle Scholar
  31. Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW et al (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475(7354):65–70CrossRefGoogle Scholar
  32. Strauss A, Bitsch F, Fendrich G, Graff P, Knecht R, Meyhack B, Jahnke W (2005) Efficient uniform isotope labeling of Abl kinase expressed in Baculovirus-infected insect cells. J Biomol NMR 31(4):343–349CrossRefGoogle Scholar
  33. Strugatsky D, Gottschalk K-E, Goldshleger R, Bibi E, Karlish SJD (2003) Expression of Na + , K + -ATPase in Pichia pastoris: analysis of wild type and D369 N mutant proteins by Fe2+-catalyzed oxidative cleavage and molecular modeling. J Biol Chem 278(46):46064–46073CrossRefGoogle Scholar
  34. Werner K, Richter C, Klein-Seetharaman J, Schwalbe H (2008) Isotope labeling of mammalian GPCRs in HEK293 cells and characterization of the C-terminus of bovine rhodopsin by high resolution liquid NMR spectroscopy. J Biomol NMR 40(1):49–53CrossRefzbMATHGoogle Scholar
  35. Wider G, Wüthrich K (1999) NMR spectroscopy of large molecules and multimolecular assemblies in solution. Curr Opin Struct Biol 9(5):594–601CrossRefGoogle Scholar
  36. Zahm JA, Padrick SB, Chen Z, Pak CW, Yunus AA, Henry L, Tomchick DR, Chen Z, Rosen MK (2013) The bacterial effector VopL organizes actin into filament-like structures. Cell 155(2):423–434CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Lindsay Clark
    • 1
  • Jacob A. Zahm
    • 1
    • 2
  • Rustam Ali
    • 1
    • 2
  • Maciej Kukula
    • 4
  • Liangqiao Bian
    • 4
  • Steven M. Patrie
    • 3
  • Kevin H. Gardner
    • 5
  • Michael K. Rosen
    • 1
    • 2
  • Daniel M. Rosenbaum
    • 1
    Email author
  1. 1.Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasUSA
  2. 2.Howard Hughes Medical InstituteUniversity of Texas Southwestern Medical CenterDallasUSA
  3. 3.Department of PathologyUniversity of Texas Southwestern Medical CenterDallasUSA
  4. 4.Shimadzu Center for Advanced Analytical ChemistryUniversity of Texas at ArlingtonArlingtonUSA
  5. 5.Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkUSA

Personalised recommendations