Advertisement

Journal of Biomolecular NMR

, Volume 62, Issue 4, pp 453–471 | Cite as

Combined automated NOE assignment and structure calculation with CYANA

  • Peter GüntertEmail author
  • Lena Buchner
Article

Abstract

The automated assignment of NOESY cross peaks has become a fundamental technique for NMR protein structure analysis. A widely used algorithm for this purpose is implemented in the program CYANA. It has been used for a large number of structure determinations of proteins in solution but was so far not described in full detail. In this paper we present a complete description of the CYANA implementation of automated NOESY assignment, which differs extensively from its predecessor CANDID by the use of a consistent probabilistic treatment, and we discuss its performance in the second round of the critical assessment of structure determination by NMR.

Keywords

Automated assignment NOESY Distance restraints Structure calculation CYANA CASD-NMR 

Notes

Acknowledgments

We gratefully acknowledge financial support by the Lichtenberg program of the Volkswagen Foundation and a Grant-in-Aid for Scientific Research of the Japan Society for the Promotion of Science (JSPS).

References

  1. Bartels C, Xia TH, Billeter M, Güntert P, Wüthrich K (1995) The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J Biomol NMR 6:1–10CrossRefGoogle Scholar
  2. Bartels C, Güntert P, Billeter M, Wüthrich K (1997) GARANT—a general algorithm for resonance assignment of multidimensional nuclear magnetic resonance spectra. J Comput Chem 18:139–149CrossRefGoogle Scholar
  3. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  4. Braun W, Go N (1985) Calculation of protein conformations by proton–proton distance constraints—a new efficient algorithm. J Mol Biol 186:611–626CrossRefGoogle Scholar
  5. Buchner L, Güntert P (2015a) Increased reliability of NMR protein structures by consensus structure bundles. Structure 23:425–434CrossRefGoogle Scholar
  6. Buchner L, Güntert P (2015b) Systematic evaluation of combined automated NOE assignment and structure calculation with CYANA. J Biomol NMR. doi: 10.1007/s10858-015-9921-z
  7. Buchner L, Schmidt E, Güntert P (2013) Peakmatch: a simple and robust method for peak list matching. J Biomol NMR 55:267–277CrossRefGoogle Scholar
  8. Gottstein D, Kirchner DK, Güntert P (2012) Simultaneous single-structure and bundle representation of protein NMR structures in torsion angle space. J Biomol NMR 52:351–364CrossRefGoogle Scholar
  9. Gronwald W, Moussa S, Elsner R, Jung A, Ganslmeier B, Trenner J, Kremer W, Neidig KP, Kalbitzer HR (2002) Automated assignment of NOESY NMR spectra using a knowledge based method (KNOWNOE). J Biomol NMR 23:271–287CrossRefGoogle Scholar
  10. Guerry P, Herrmann T (2011) Advances in automated NMR protein structure determination. Q Rev Biophys 44:257–309CrossRefGoogle Scholar
  11. Güntert P (1998) Structure calculation of biological macromolecules from NMR data. Q Rev Biophys 31:145–237CrossRefGoogle Scholar
  12. Güntert P (2009) Automated structure determination from NMR spectra. Eur Biophys J 38:129–143CrossRefGoogle Scholar
  13. Güntert P, Braun W, Wüthrich K (1991a) Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol 217:517–530CrossRefGoogle Scholar
  14. Güntert P, Qian YQ, Otting G, Müller M, Gehring W, Wüthrich K (1991b) Structure determination of the Antp(C39S) homeodomain from nuclear magnetic resonance data in solution using a novel strategy for the structure calculation with the programs DIANA, CALIBA, HABAS and GLOMSA. J Mol Biol 217:531–540CrossRefGoogle Scholar
  15. Güntert P, Dötsch V, Wider G, Wüthrich K (1992) Processing of multidimensional NMR data with the new software PROSA. J Biomol NMR 2:619–629CrossRefGoogle Scholar
  16. Güntert P, Berndt KD, Wüthrich K (1993) The program ASNO for computer-supported collection of NOE upper distance constraints as input for protein structure determination. J Biomol NMR 3:601–606CrossRefGoogle Scholar
  17. Güntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298CrossRefGoogle Scholar
  18. Herrmann T, Güntert P, Wüthrich K (2002a) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227CrossRefGoogle Scholar
  19. Herrmann T, Güntert P, Wüthrich K (2002b) Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J Biomol NMR 24:171–189CrossRefGoogle Scholar
  20. Huang YJ, Tejero R, Powers R, Montelione GT (2006) A topology-constrained distance network algorithm for protein structure determination from NOESY data. Proteins 62:587–603CrossRefGoogle Scholar
  21. Ikeya T, Jee J-G, Shigemitsu Y, Hamatsu J, Mishima M, Ito Y, Kainosho M, Güntert P (2011) Exclusively NOESY-based automated NMR assignment and structure determination of proteins. J Biomol NMR 50:137–146CrossRefGoogle Scholar
  22. Jee J, Güntert P (2003) Influence of the completeness of chemical shift assignments on NMR structures obtained with automated NOE assignment. J Struct Funct Genomics 4:179–189CrossRefGoogle Scholar
  23. Johnson BA, Blevins RA (1994) NMR view—a computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614CrossRefGoogle Scholar
  24. Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Ono AM, Güntert P (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440:52–57CrossRefADSGoogle Scholar
  25. Kirchner DK, Güntert P (2011) Objective identification of residue ranges for the superposition of protein structures. BMC Bioinform 12:170CrossRefGoogle Scholar
  26. Kobayashi N, Iwahara J, Koshiba S, Tomizawa T, Tochio N, Güntert P, Kigawa T, Yokoyama S (2007) KUJIRA, a package of integrated modules for systematic and interactive analysis of NMR data directed to high-throughput NMR structure studies. J Biomol NMR 39:31–52CrossRefGoogle Scholar
  27. Kuszewski J, Schwieters CD, Garrett DS, Byrd RA, Tjandra N, Clore GM (2004) Completely automated, highly error-tolerant macromolecular structure determination from multidimensional nuclear overhauser enhancement spectra and chemical shift assignments. J Am Chem Soc 126:6258–6273CrossRefGoogle Scholar
  28. López-Méndez B, Güntert P (2006) Automated protein structure determination from NMR spectra. J Am Chem Soc 128:13112–13122CrossRefGoogle Scholar
  29. Mumenthaler C, Braun W (1995) Automated assignment of simulated and experimental NOESY spectra of proteins by feedback filtering and self-correcting distance geometry. J Mol Biol 254:465–480CrossRefGoogle Scholar
  30. Mumenthaler C, Güntert P, Braun W, Wüthrich K (1997) Automated combined assignment of NOESY spectra and three-dimensional protein structure determination. J Biomol NMR 10:351–362CrossRefGoogle Scholar
  31. Nilges M (1995) Calculation of protein structures with ambiguous distance restraints—automated assignment of ambiguous NOE crosspeaks and disulfide connectivities. J Mol Biol 245:645–660CrossRefGoogle Scholar
  32. Nilges M, Macias MJ, O’Donoghue SI, Oschkinat H (1997) Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin. J Mol Biol 269:408–422CrossRefGoogle Scholar
  33. Orts J, Vögeli B, Riek R, Güntert P (2013) Stereospecific assignments in proteins using exact NOEs. J Biomol NMR 57:211–218CrossRefGoogle Scholar
  34. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes. The art of scientific computing. Cambridge University Press, CambridgezbMATHGoogle Scholar
  35. Rieping W, Habeck M, Bardiaux B, Bernard A, Malliavin TE, Nilges M (2007) ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23:381–382CrossRefGoogle Scholar
  36. Rosato A, Bagaria A, Baker D, Bardiaux B, Cavalli A, Doreleijers JF, Giachetti A, Guerry P, Güntert P, Herrmann T, Huang YJ, Jonker HRA, Mao B, Malliavin TE, Montelione GT, Nilges M, Raman S, van der Schot G, Vranken WF, Vuister GW, Bonvin AMJJ (2009) CASD-NMR: critical assessment of automated structure determination by NMR. Nat Methods 6:625–626CrossRefGoogle Scholar
  37. Rosato A, Aramini JM, Arrowsmith C, Bagaria A, Baker D, Cavalli A, Doreleijers JF, Eletsky A, Giachetti A, Guerry P, Gutmanas A, Güntert P, He YF, Herrmann T, Huang YPJ, Jaravine V, Jonker HRA, Kennedy MA, Lange OF, Liu GH, Malliavin TE, Mani R, Mao BC, Montelione GT, Nilges M, Rossi P, van der Schot G, Schwalbe H, Szyperski TA, Vendruscolo M, Vernon R, Vranken WF, de Vries S, Vuister GW, Wu B, Yang YH, Bonvin AMJJ (2012) Blind testing of routine, fully automated determination of protein structures from NMR data. Structure 20:227–236CrossRefGoogle Scholar
  38. Schmidt E, Güntert P (2012) A new algorithm for reliable and general NMR resonance assignment. J Am Chem Soc 134:12817–12829CrossRefGoogle Scholar
  39. Schmidt E, Güntert P (2013) Reliability of exclusively NOESY-based automated resonance assignment and structure determination of proteins. J Biomol NMR 57:193–204CrossRefGoogle Scholar
  40. Schubert M, Labudde D, Oschkinat H, Schmieder P (2002) A software tool for the prediction of Xaa-Pro peptide bond conformations in proteins based on 13C chemical shift statistics. J Biomol NMR 24:149–154CrossRefGoogle Scholar
  41. Schütz AK, Vagt T, Huber M, Ovchinnikova OY, Cadalbert R, Wall J, Güntert P, Böckmann A, Glockshuber R, Meier BH (2015) Atomic-resolution three-dimensional structure of amyloid beta fibrils bearing the Osaka mutation. Angew Chem Int Edit 54:331–335CrossRefGoogle Scholar
  42. Skinner SP, Goult BT, Fogh RH, Boucher W, Stevens TJ, Laue ED, Vuister GW (2015) Structure calculation, refinement and validation using CcpNmr analysis. Acta Crystallogr D 71:154–161CrossRefGoogle Scholar
  43. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Wenger RK, Yao HY, Markley JL (2008) BioMagResBank. Nucleic Acids Res 36:D402–D408CrossRefGoogle Scholar
  44. Vögeli B, Kazemi S, Güntert P, Riek R (2012) Spatial elucidation of motion in proteins by ensemble-based structure calculation using exact NOEs. Nat Struct Mol Biol 19:1053–1057CrossRefGoogle Scholar
  45. Williamson MP, Craven CJ (2009) Automated protein structure calculation from NMR data. J Biomol NMR 43:131–143CrossRefGoogle Scholar
  46. Zhang Z, Porter J, Tripsianes K, Lange OF (2014) Robust and highly accurate automatic NOESY assignment and structure determination with Rosetta. J Biomol NMR 59:135–145CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Center for Biomolecular Magnetic Resonance, Institute of Biophysical ChemistryGoethe University Frankfurt am MainFrankfurt am MainGermany
  2. 2.Laboratory of Physical ChemistryETH ZürichZurichSwitzerland
  3. 3.Graduate School of ScienceTokyo Metropolitan UniversityHachiojiJapan

Personalised recommendations