Journal of Biomolecular NMR

, Volume 61, Issue 2, pp 161–171 | Cite as

Sensitivity and resolution of proton detected spectra of a deuterated protein at 40 and 60 kHz magic-angle-spinning

  • Andrew J. Nieuwkoop
  • W. Trent Franks
  • Kristina Rehbein
  • Anne Diehl
  • Ümit Akbey
  • Frank Engelke
  • Lyndon Emsley
  • Guido Pintacuda
  • Hartmut Oschkinat
Article

Abstract

The use of small rotors capable of very fast magic-angle spinning (MAS) in conjunction with proton dilution by perdeuteration and partial reprotonation at exchangeable sites has enabled the acquisition of resolved, proton detected, solid-state NMR spectra on samples of biological macromolecules. The ability to detect the high-gamma protons, instead of carbons or nitrogens, increases sensitivity. In order to achieve sufficient resolution of the amide proton signals, rotors must be spun at the maximum rate possible given their size and the proton back-exchange percentage tuned. Here we investigate the optimal proton back-exchange ratio for triply labeled SH3 at 40 kHz MAS. We find that spectra acquired on 60 % back-exchanged samples in 1.9 mm rotors have similar resolution at 40 kHz MAS as spectra of 100 % back-exchanged samples in 1.3 mm rotors spinning at 60 kHz MAS, and for (H)NH 2D and (H)CNH 3D spectra, show 10–20 % higher sensitivity. For 100 % back-exchanged samples, the sensitivity in 1.9 mm rotors is superior by a factor of 1.9 in (H)NH and 1.8 in (H)CNH spectra but at lower resolution. For (H)C(C)NH experiments with a carbon–carbon mixing period, this sensitivity gain is lost due to shorter relaxation times and less efficient transfer steps. We present a detailed study on the sensitivity of these types of experiments for both types of rotors, which should enable experimentalists to make an informed decision about which type of rotor is best for specific applications.

Keywords

Solid-state NMR Fast spinning Proton detection Deuteration 1H back exchange 

References

  1. Agarwal V et al (2014) De Novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy. Angew Chem Int Ed Engl. doi:10.1002/anie.201405730 Google Scholar
  2. Akbey U et al (2010) Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy. J Biomol NMR 46:67–73. doi:10.1007/S10858-009-9369-0 CrossRefGoogle Scholar
  3. Akbey U et al (2014) Quadruple-resonance magic-angle spinning NMR spectroscopy of deuterated solid proteins. Angew Chem Int Ed Engl 53:2438–2442. doi:10.1002/anie.201308927 CrossRefGoogle Scholar
  4. Asami S, Szekely K, Schanda P, Meier BH, Reif B (2012) Optimal degree of protonation for (1)H detection of aliphatic sites in randomly deuterated proteins as a function of the MAS frequency. J Biomol NMR 54:155–168. doi:10.1007/s10858-012-9659-9 CrossRefGoogle Scholar
  5. Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95:1197–1207CrossRefADSGoogle Scholar
  6. Barbet-Massin E et al (2013) Out-and-back C–C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS. J Biomol NMR. doi:10.1007/s10858-013-9757-3 Google Scholar
  7. Barbet-Massin E et al (2014) Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J Am Chem Soc 136:12489–12497. doi:10.1021/ja507382j CrossRefGoogle Scholar
  8. Bockmann A et al (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45:319–327. doi:10.1007/s10858-009-9374-3 CrossRefGoogle Scholar
  9. Chevelkov V et al (2003) 1H detection in MAS solid-state NMR Spectroscopy of biomacromolecules employing pulsed field gradients for residual solvent suppression. J Am Chem Soc 125:7788–7789. doi:10.1021/ja029354b CrossRefGoogle Scholar
  10. Chevelkov V, Faelber K, Diehl A, Heinemann U, Oschkinat H, Reif B (2005) Detection of dynamic water molecules in a microcrystalline sample of the SH3 domain of a-spectrin by MAS solid-state NMR. J Biomol NMR 31:295–310. doi:10.1007/S10858-005-1718-Z CrossRefGoogle Scholar
  11. Chevelkov V, Rehbein K, Diehl A, Reif B (2006) Ultra-high resolution in proton solid-state NMR spectroscopy at high levels of deuteration. Angew Chem Int Ed 45:3878–3881. doi:10.1002/anie.200600328 CrossRefGoogle Scholar
  12. Chevelkov V, Habenstein B, Loquet A, Giller K, Becker S, Lange A (2014) Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins. J Magn Reson 242:180–188. doi:10.1016/j.jmr.2014.02.020 CrossRefADSGoogle Scholar
  13. Hediger S, Meier BH, Ernst RR (1993) Cross-polarization under fast magic-angle sample-spinning using amplitude-modulated spin-lock sequences. Chem Phys Lett 213:627–635. doi:10.1016/0009-2614(93)89172-E CrossRefADSGoogle Scholar
  14. Huber M, Hiller S, Schanda P, Ernst M, Bockmann A, Verel R, Meier BH (2011) A proton-detected 4D solid-state NMR experiment for protein structure determination. ChemPhysChem 12:915–918. doi:10.1002/cphc.201100062 CrossRefGoogle Scholar
  15. Huber M, With O, Schanda P, Verel R, Ernst M, Meier BH (2012) A supplementary coil for (2)H decoupling with commercial HCN MAS probes. J Magn Reson 214:76–80. doi:10.1016/j.jmr.2011.10.010 CrossRefADSGoogle Scholar
  16. Kay LE, Ikura M, Tschudin R, Bax A (1990) 3-Dimensional triple-resonance NMR-spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514. doi:10.1016/0022-2364(90)90333-5 ADSGoogle Scholar
  17. Knight MJ et al (2011) Fast resonance assignment and fold determination of human superoxide dismutase by high-resolution proton-detected solid-state MAS NMR spectroscopy. Angew Chem Int Ed 50:11697–11701. doi:10.1002/Anie.201106340 CrossRefGoogle Scholar
  18. Knight MJ, Felli IC, Pierattelli R, Bertini I, Emsley L, Herrmann T, Pintacuda G (2012a) Rapid measurement of pseudocontact shifts in metalloproteins by proton-detected solid-state NMR spectroscopy. J Am Chem Soc 134:14730–14733. doi:10.1021/ja306813j CrossRefGoogle Scholar
  19. Knight MJ et al (2012b) Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR. Proc Natl Acad Sci USA 109:11095–11100. doi:10.1073/pnas.1204515109 CrossRefADSGoogle Scholar
  20. Laage S, Sachleben JR, Steuernagel S, Pierattelli R, Pintacuda G, Emsley L (2009) Fast acquisition of multi-dimensional spectra in solid-state NMR enabled by ultra-fast MAS. J Magn Reson 196(133–141):2008. doi:10.1016/J.Jmr.10.019 Google Scholar
  21. Lewandowski JR, Sein J, Sass HJ, Grzesiek S, Blackledge M, Emsley L (2010) Measurement of site-specific 13C spin-lattice relaxation in a crystalline protein. J Am Chem Soc 132:8252–8254. doi:10.1021/ja102744b CrossRefGoogle Scholar
  22. Lewandowski JR, Dumez JN, Akbey U, Lange S, Emsley L, Oschkinat H (2011) Enhanced resolution and coherence lifetimes in the solid-state NMR spectroscopy of perdeuterated proteins under ultrafast magic-angle spinning. J Phys Chem Lett 2:2205–2211. doi:10.1021/Jz200844n CrossRefGoogle Scholar
  23. Linser R, Fink U, Reif B (2008) Proton-detected scalar coupling based assignment strategies in MAS solid-state NMR spectroscopy applied to perdeuterated proteins. J Magn Reson 193(89–93):2008. doi:10.1016/J.Jmr.04.021 Google Scholar
  24. Linser R, Fink U, Reif B (2009) Probing surface accessibility of proteins using paramagnetic relaxation in solid-state NMR spectroscopy. J Am Chem Soc 131:13703–13708. doi:10.1021/Ja903892j CrossRefGoogle Scholar
  25. Linser R, Fink U, Reif B (2010) Assignment of dynamic regions in biological solids enabled by spin-state selective NMR experiments. J Am Chem Soc 132:8891–8893. doi:10.1021/ja102612m CrossRefGoogle Scholar
  26. Linser R et al (2014) Solid-state NMR structure determination from diagonal-compensated, sparsely nonuniform-sampled 4D proton–proton restraints. J Am Chem Soc 136:11002–11010. doi:10.1021/Ja504603g CrossRefGoogle Scholar
  27. Marchetti A et al (2012) Backbone assignment of fully protonated solid proteins by 1H detection and ultrafast magic-angle-spinning NMR spectroscopy. Angew Chem Int Ed 51:10756–10759. doi:10.1002/Anie.201203124 CrossRefGoogle Scholar
  28. Nadaud PS, Helmus JJ, Sengupta I, Jaroniec CP (2010) Rapid acquisition of multidimensional solid-state NMR spectra of proteins facilitated by covalently bound paramagnetic tags. J Am Chem Soc 132:9561–9563. doi:10.1021/Ja103545e CrossRefGoogle Scholar
  29. Reif B, Jaroniec CP, Rienstra CM, Hohwy M, Griffin RG (2001) 1H–1H MAS correlation spectroscopy and distance measurements in a deuterated peptide. J Magn Reson 151:320–327. doi:10.1006/jmre.2001.2354 CrossRefADSGoogle Scholar
  30. Shaka AJ, Keeler J, Frenkiel T, Freeman R (1983) An Improved sequence for broad-band decoupling—Waltz-16. J Magn Reson 52:335–338. doi:10.1016/0022-2364(83)90207-X ADSGoogle Scholar
  31. Stevens TJ et al (2011) A software framework for analysing solid-state MAS NMR data. J Biomol NMR 51:437–447. doi:10.1007/s10858-011-9569-2 CrossRefGoogle Scholar
  32. van Rossum BJ, Castellani F, Rehbein K, Pauli J, Oschkinat H (2001) Assignment of the nonexchanging protons of the alpha-spectrin SH3 domain by two- and three-dimensional 1H–13C solid-state magic-angle spinning NMR and comparison of solution and solid-state proton chemical shifts. ChemBioChem 2:906–914. doi:10.1002/1439-7633(20011203)2:12<906:AID-CBIC906>3.0.CO;2-M CrossRefGoogle Scholar
  33. Verel R, Ernst M, Meier BH (2001) Adiabatic dipolar recoupling in solid-state NMR: the DREAM scheme. J Magn Reson 150:81–99. doi:10.1006/jmre.2001.2310 CrossRefADSGoogle Scholar
  34. Ward ME, Shi L, Lake E, Krishnamurthy S, Hutchins H, Brown LS, Ladizhansky V (2011) Proton-detected solid-state NMR reveals intramembrane polar networks in a seven-helical transmembrane protein proteorhodopsin. J Am Chem Soc 133:17434–17443. doi:10.1021/ja207137h CrossRefGoogle Scholar
  35. Ward ME, Wang S, Krishnamurthy S, Hutchins H, Fey M, Brown LS, Ladizhansky V (2014) High-resolution paramagnetically enhanced solid-state NMR spectroscopy of membrane proteins at fast magic angle spinning. J Biomol NMR 58:37–47. doi:10.1007/s10858-013-9802-2 CrossRefGoogle Scholar
  36. Wickramasinghe NP, Kotecha M, Samoson A, Past J, Ishii Y (2007) Sensitivity enhancement in 13C solid-state NMR of protein microcrystals by use of paramagnetic metal ions for optimizing 1H 1T relaxation. J Magn Reson 184:350–356. doi:10.1016/J.Jmr.2006.10.012 CrossRefADSGoogle Scholar
  37. Wickramasinghe NP et al (2009) Nanomole-scale protein solid-state NMR by breaking intrinsic 1H 1T boundaries. Nat Methods 6:215–218. doi:10.1038/Nmeth.1300 CrossRefGoogle Scholar
  38. Zhou DH, Rienstra CM (2008) High-performance solvent suppression for proton detected solid-state NMR. J Magn Reson 192:167–172. doi:10.1016/j.jmr.2008.01.012 CrossRefADSGoogle Scholar
  39. Zhou DH, Graesser DT, Franks WT, Rienstra CM (2006) Sensitivity and resolution in proton solid-state NMR at intermediate deuteration levels: quantitative linewidth characterization and applications to correlation spectroscopy. J Magn Reson 178:297–307. doi:10.1016/j.jmr.2005.10.008 CrossRefADSGoogle Scholar
  40. Zhou DH, Shah G, Cormos M, Mullen C, Sandoz D, Rienstra CM (2007a) Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. J Am Chem Soc 129:11791–11801. doi:10.1021/ja073462m CrossRefGoogle Scholar
  41. Zhou DH et al (2007b) Solid-state protein-structure determination with proton-detected triple-resonance 3D magic-angle-spinning NMR spectroscopy. Angew Chem Int Ed Engl 46:8380–8383. doi:10.1002/anie.200702905 CrossRefGoogle Scholar
  42. Zhou DH et al (2012) Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy. J Biomol NMR 54:291–305. doi:10.1007/s10858-012-9672-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Andrew J. Nieuwkoop
    • 1
  • W. Trent Franks
    • 1
  • Kristina Rehbein
    • 1
  • Anne Diehl
    • 1
  • Ümit Akbey
    • 1
  • Frank Engelke
    • 2
  • Lyndon Emsley
    • 3
    • 4
  • Guido Pintacuda
    • 3
  • Hartmut Oschkinat
    • 1
  1. 1.Leibniz-Institut für Molekulare Pharmakologie (FMP)BerlinGermany
  2. 2.Bruker Biospin GmbHRheinstettenGermany
  3. 3.Centre de RMN à très haus champsUniversité de Lyon (CNRS/ENS Lyon/UCB Lyon 1)VilleurbanneFrance
  4. 4.Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations