Journal of Biomolecular NMR

, Volume 61, Issue 3–4, pp 299–310 | Cite as

Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional MAS NMR

  • Matthew T. Eddy
  • Yongchao Su
  • Robert Silvers
  • Loren Andreas
  • Lindsay Clark
  • Gerhard Wagner
  • Guido Pintacuda
  • Lyndon Emsley
  • Robert G. Griffin
Article

Abstract

The human voltage dependent anion channel 1 (VDAC) is a 32 kDa β-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest VDAC requires a lipid bilayer to achieve full function, motivating the need for atomic resolution structural information of VDAC in a membrane environment. Here we report an essential step toward that goal: extensive assignments of backbone and side chain resonances for VDAC in DMPC lipid bilayers via magic angle spinning nuclear magnetic resonance (MAS NMR). VDAC reconstituted into DMPC lipid bilayers spontaneously forms two-dimensional lipid crystals, showing remarkable spectral resolution (0.5–0.3 ppm for 13C line widths and <0.5 ppm 15N line widths at 750 MHz). In addition to the benefits of working in a lipid bilayer, several distinct advantages are observed with the lipid crystalline preparation. First, the strong signals and sharp line widths facilitated extensive NMR resonance assignments for an integral membrane β-barrel protein in lipid bilayers by MAS NMR. Second, a large number of residues in loop regions were readily observed and assigned, which can be challenging in detergent-solubilized membrane proteins where loop regions are often not detected due to line broadening from conformational exchange. Third, complete backbone and side chain chemical shift assignments could be obtained for the first 25 residues, which comprise the functionally important N-terminus. The reported assignments allow us to compare predicted torsion angles for VDAC prepared in DMPC 2D lipid crystals, DMPC liposomes, and LDAO-solubilized samples to address the possible effects of the membrane mimetic environment on the conformation of the protein. Concluding, we discuss the strengths and weaknesses of the reported assignment approach and the great potential for even more complete assignment studies and de novo structure determination via 1H detected MAS NMR.

Keywords

VDAC MAS Recoupling 2D lipid crystals 

Notes

Acknowledgments

This research was supported by NIH Grants EB001960 and EB002026.

Supplementary material

10858_2015_9903_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 24 kb)

References

  1. Ader C, Schneider R, Hornig S, Velisetty P, Wilson EM, Lange A, Giller K, Ohmert I, Martin-Eauclaire M-F, Trauner D, Becker S, Pongs O, Baldus M (2008) A structural link between inactivation and block of a K+ channel. Nat Struct Mol Biol 15(6):605–612CrossRefGoogle Scholar
  2. Ahuja S, Hornak V, Yan ECY, Syrett N, Goncalves JA, Hirshfeld A, Ziliox M, Sakmar TP, Sheves M, Reeves PJ, Smith SO, Eilers M (2009) Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Nat Struct Mol Biol 16(2):168–175CrossRefGoogle Scholar
  3. Andreas LB, Eddy MT, Pielak RM, Chou J, Griffin RG (2010) Magic angle spinning NMR investigation of influenza A M2(18–60): support for an allosteric mechanism of inhibition. J Am Chem Soc 132(32):10958–10960CrossRefGoogle Scholar
  4. Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M (2005) Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J Am Chem Soc 127(37):12965–12974CrossRefGoogle Scholar
  5. Arora A, Abildgaard F, Bushweller JH, Tamm LK (2001) Structure of outer membrane protein. A transmembrane domain by NMR spectroscopy. Nat Struct Biol 8(4):334–338CrossRefGoogle Scholar
  6. Bajaj VS, Mak-Jurkauskas ML, Belenky M, Herzfeld J, Griffin RG (2009) Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization-enhanced solid-state NMR. Proc Natl Acad Sci USA 106(23):9244–9249CrossRefADSGoogle Scholar
  7. Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95(6):1197–1207CrossRefADSGoogle Scholar
  8. Barbet-Massin E, Pell AJ, Retel JS, Andreas LB, Jaudzems K, Franks WT, Nieuwkoop AJ, Hiller M, Higman V, Guerry P, Bertarello A, Knight MJ, Felletti M, Le Marchand T, Kotelovica S, Akopjana I, Tars K, Stoppini M, Bellotti V, Bolognesi M, Ricagno S, Chou JJ, Griffin RG, Oschkinat H, Lesage A, Emsley L, Herrmann T, Pintacuda G (2014) Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J Am Chem Soc 136(35):12489–12497CrossRefGoogle Scholar
  9. Bayrhuber M, Meins T, Habeck M, Becker S, Giller K, Villinger S, Vonrhein C, Griesinger C, Zweckstetter M, Zeth K (2008) Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci USA 105(40):15370–15375CrossRefADSGoogle Scholar
  10. Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103:1–8Google Scholar
  11. Bennett AE, Rienstra C, Griffiths J, Zhen W, Lansbury P, Griffin R (1998) Homonuclear radio frequency-driven recoupling in rotating solids. J Chem Phys 108(22):9463–9479CrossRefADSGoogle Scholar
  12. Bhate MP, McDermott AE (2012) Protonation state of E71 in KcsA and its role for channel collapse and inactivation. Proc Natl Acad Sci USA 109(38):15265–15270CrossRefADSGoogle Scholar
  13. Bhate MP, Wylie BJ, Tian L, Mcdermott AE (2010) Conformational dynamics in the selectivity filter of KcsA in response to potassium ion concentration. J Mol Biol 401:1–12Google Scholar
  14. Brunner JD, Lim NK, Schenck S, Duerst A, Dutzler R (2014) X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 516(7530):207–212CrossRefADSGoogle Scholar
  15. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi H-J, Kuhn P, Weis WI, Kobilka BK (2007) High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318(5854):1258–1265CrossRefADSGoogle Scholar
  16. Cross TA, Ekanayake V, Paulino J, Wright A (2014) Solid state NMR: the essential technology for helical membrane protein structural characterization. J Magn Reson 239(C):100–109CrossRefADSGoogle Scholar
  17. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293CrossRefGoogle Scholar
  18. Dolder M, Zeth K, Tittmann P, Gross H, Welte W, Wallimann T (1999) Crystallization of the human, mitochondrial voltage-dependent anion-selective channel in the presence of phospholipids. J Struct Biol 127(1):64–71CrossRefGoogle Scholar
  19. Doré AS, Robertson N, Errey JC, Ng I, Hollenstein K, Tehan B, Hurrell E, Bennett K, Congreve M, Magnani F, Tate CG, Weir M, Marshall FH (2011) Structure of the adenosine A2A Receptor in complex with ZM241385 and the Xanthines XAC and Caffeine. Structure 19(9):1283–1293CrossRefGoogle Scholar
  20. Eddy MT, Yu T-Y (2014) Membranes, peptides, and disease. Unraveling the mechanisms of viral proteins with solid state nuclear magnetic resonance spectroscopy. Solid State Nucl Magn Reson 61–62:1–7CrossRefGoogle Scholar
  21. Eddy MT, Ong T-C, Clark L, Teijido O, van der Wel PCA, Garces R, Wagner G, Rostovtseva TK, Griffin RG (2012) Lipid dynamics and protein–lipid interactions in 2D crystals formed with the β-barrel integral membrane protein VDAC1. J Am Chem Soc 134:1–8Google Scholar
  22. Etzkorn M, Martell S, Andronesi OC, Seidel K, Engelhard M, Baldus M (2007) Secondary structure, dynamics, and topology of a seven-helix receptor in native membranes, studied by solid-state NMR spectroscopy. Angew Chem Int Ed 46(3):459–462CrossRefGoogle Scholar
  23. Fernández C, Adeishvili K, Wüthrich K (2001) Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles. Proc Natl Acad Sci USA 98(5):2358–2363CrossRefADSGoogle Scholar
  24. Fernández C, Hilty C, Wider G, Güntert P, Wüthrich K (2004) NMR structure of the integral membrane protein OmpX. J Mol Biol 336(5):1211–1221CrossRefGoogle Scholar
  25. Frericks HL, Zhou DH, Yap LL, Gennis RB, Rienstra CM (2006) Magic-angle spinning solid-state NMR of a 144 kDa membrane protein complex: E. coli cytochrome bo3 oxidase. J Biomol NMR 36(1):55–71CrossRefGoogle Scholar
  26. Goddard TD, Kneller GD SPARKY 3. University of California, San FranciscoGoogle Scholar
  27. Griffiths J, Bennett A, Engelhard M, Siebert F, Raap J, Lugtenburg J, Herzfeld J, Griffin R (2000a) Structural investigation of the active site in bacteriorhodopsin: geometric constraints on the roles of Asp-85 and Asp-212 in the proton-pumping mechanism from solid state NMR. Biochemistry 39(2):362–371CrossRefGoogle Scholar
  28. Griffiths JM, Bennett AE, Engelhard M, Siebert F, Raap J, Lugtenburg J, Herzfeld J, Griffin RG (2000b) Structural investigation of the active site of bacteriorhodopsin: geometric constraints on the roles of Asp-85 and Asp-212 in the proton pumping mechanism from solid-state NMR. Biochemistry 39:362–371CrossRefGoogle Scholar
  29. Harbison GS, Smith SO, Pardoen JA, Courtin JM, Lugtenburg J, Herzfeld J, Mathies RA, Griffin RG (1985) Solid-state 13C NMR detection of a perturbed 6-s-trans chromophore in bacteriorhodopsin. Biochemistry 24(24):6955–6962CrossRefGoogle Scholar
  30. Heise H, Hoyer W, Becker S, Andronesi OC, Riedel D, Baldus M (2005) Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proc Natl Acad Sci USA 102(44):15871–15876CrossRefADSGoogle Scholar
  31. Higman VA, Flinders J, Hiller M, Jehle S, Markovic S, Fiedler S, Rossum B-J, Oschkinat H (2009) Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively 13C-labelled proteins. J Biomol NMR 44(4):245–260CrossRefGoogle Scholar
  32. Hiller M, Krabben L, Vinothkumar KR, Castellani F, van Rossum BJ, Kuhlbrandt W, Oschkinat H (2005) Solid-state magic-angle spinning NMR of outer-membrane protein G from Escherichia coli. ChemBioChem 6(9):1679–1684CrossRefGoogle Scholar
  33. Hiller M, Higman VA, Jehle S, van Rossum B-J, Kühlbrandt W, Oschkinat H (2008a) [2,3-(13)C]-labeling of aromatic residues-getting a head start in the magic-angle-spinning NMR assignment of membrane proteins. J Am Chem Soc 130(2):408–409CrossRefGoogle Scholar
  34. Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008b) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science (New York, NY) 321(5893):1206–1210CrossRefADSGoogle Scholar
  35. Hiller S, Malia TJ, Garces RG, Orekhov VY, Wagner G (2010) Backbone and ILV side chain methyl group assignments of the integral human membrane protein VDAC-1. Biomol NMR Assign 4(1):29–32CrossRefGoogle Scholar
  36. Hing A, Vega S, Schaefer J (1993) Measurement of heteronuclear dipolar coupling by transferred-echo double-resonance NMR. J Magn Reson Ser A 103(2):151–162CrossRefADSGoogle Scholar
  37. Hino T, Arakawa T, Iwanari H, Yurugi-Kobayashi T, Ikeda-Suno C, Nakada-Nakura Y, Kusano-Arai O, Weyand S, Shimamura T, Nomura N, Cameron AD, Kobayashi T, Hamakubo T, Iwata S, Murata T (2012) G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482(7384):237–240ADSGoogle Scholar
  38. Hodge T, Colombini M (1997) Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol 157(3):271–279CrossRefGoogle Scholar
  39. Hong M, Zhang Y, Hu F (2012) Membrane Protein Structure and Dynamics from NMR Spectroscopy. Annu Rev Phys Chem 63(1):1–24CrossRefADSGoogle Scholar
  40. Hu JG, Sun BQ, Bizounok M, Hatcher ME, Lansing JC, Raap J, Verdegem PJE, Lugtenburg J, Griffin RG, Herzfeld J (1998) Early and late M intermediates in the bacteriorhodopsin photocycle: a solid-state NMR study. Biochemistry 37:8088–8096CrossRefGoogle Scholar
  41. Hwang PM, Choy W-Y, Lo EI, Chen L, Forman-Kay JD, Raetz CRH, Privé GG, Bishop RE, Kay LE (2002) Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc Natl Acad Sci USA 99(21):13560–13565CrossRefADSGoogle Scholar
  42. Jaroniec C, Filip C, Griffin R (2002a) 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly 13C, 15 N-labeled solids. J Am Chem Soc 124(36):10728–10742CrossRefGoogle Scholar
  43. Jaroniec CP, Filip C, Griffin RG (2002b) 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly (13)C, (15)N-labeled solids. J Am Chem Soc 124(36):10728–10742CrossRefGoogle Scholar
  44. Krabben L, van BJ Rossum, Jehle S, Bocharov E, Lyukmanova EN, Schulga AA, Arseniev A, Hucho F, Oschkinat H (2009) Loop 3 of short neurotoxin II is an additional interaction site with membrane-bound nicotinic acetylcholine receptor as detected by solid-state NMR spectroscopy. J Mol Biol 390(4):662–671CrossRefGoogle Scholar
  45. Lakshmi KV, Auger M, Raap J, Lugtenburg J, Griffin RG, Herzfeld J (1993) Internuclear distance measurement in a reaction intermediate: solid-state 13C NMR rotational resonance determination of the Schiff-base configuration in the M-photointermediate of bacteriorhodopsin. J Am Chem Soc 115:8515–8516CrossRefGoogle Scholar
  46. Lange A, Giller K, Pongs O, Becker S, Baldus M (2006) Two-dimensional solid-state nmr applied to a chimeric potassium channel. J Recept Signal Transduct 26(5–6):379–393CrossRefGoogle Scholar
  47. Lansing JC, Hohwy M, Jaroniec CP, Creemers AFL, Lugtenburg J, Herzfeld J, Griffin RG (2002) Chromophore distortions in the bacteriorhodopsin photocycle: evolution of the H-C14-C15-H dihedral angle measured by solid-state NMR. Biochemistry 41(2):431–438Google Scholar
  48. Li Y, Berthold DA, Gennis RB, Rienstra CM (2008) Chemical shift assignment of the transmembrane helices of DsbB, a 20-kDa integral membrane enzyme, by 3D magic-angle spinning NMR spectroscopy. Protein Sci 17(2):199–204CrossRefGoogle Scholar
  49. Liang B, Tamm LK (2007) Structure of outer membrane protein G by solution NMR spectroscopy. Proc Natl Acad Sci USA 104(41):16140–16145CrossRefADSGoogle Scholar
  50. Mak-Jurkauskas ML, Bajaj VS, Hornstein MK, Belenky M, Griffin RG, Herzfeld J (2008) Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR. Proc Natl Acad Sci USA 105(3):883–888CrossRefADSGoogle Scholar
  51. Malia TJ, Wagner G (2007) NMR structural investigation of the mitochondrial outer membrane protein VDAC and its interaction with antiapoptotic Bcl-xL. Biochemistry 46(2):514–525CrossRefGoogle Scholar
  52. Mannella CA (1997) Minireview: on the structure and gating mechanism of the mitochondrial channel, VDAC. J Bioenerg Biomembr 29(6):525–531CrossRefGoogle Scholar
  53. McDermott AE (2004) Structural and dynamic studies of proteins by solid-state NMR spectroscopy: rapid movement forward. Curr Opin Struct Biol 14(5):554–561CrossRefGoogle Scholar
  54. McDermott A (2009) Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu Rev Biophys 38:385–403CrossRefMathSciNetGoogle Scholar
  55. Morcombe CR, Gaponenko V, Byrd RA, Zilm KW (2004) Diluting abundant spins by isotope edited radio frequency field assisted diffusion. J Am Chem Soc 126(23):7196–7197CrossRefGoogle Scholar
  56. Morris G, Freeman R (1979) Enhancement of nuclear magnetic resonance signals by polarization transfer. J Am Chem Soc 101(3):760–762CrossRefGoogle Scholar
  57. Oxenoid K, Chou JJ (2005) The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc Natl Acad Sci USA 102(31):10870–10875CrossRefADSGoogle Scholar
  58. Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, Angelis AAD, Marassi FM, Opella SJ (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491(7426):779–783ADSGoogle Scholar
  59. Pines A, Gibby M, Waugh J (1973) Proton-enhanced NMR of dilute spins in solids. J Chem Phys 59(2):569–590CrossRefADSGoogle Scholar
  60. Pryor E, Horanyi P, Clark K, Fedoriw N, Connelly S, Koszelak-Rosenblum M, Zhu G, Malkowski M, Wiener M, Dumont M (2013) Structure of the integral membrane protein CAAX protease Ste24p. Science (New York, NY) 339(6127):1600–1604CrossRefADSGoogle Scholar
  61. Reckel S, Gottstein D, Stehle J, Löhr F, Verhoefen MK, Takeda M, Silvers R, Kainosho M, Glaubitz C, Wachtveitl J (2011) Solution NMR structure of proteorhodopsin. Angew Chem Int Ed 50(50):11942–11946CrossRefGoogle Scholar
  62. Renault M, Saurel O, Czaplicki J, Demange P, Gervais V, Löhr F, Réat V, Piotto M, Milon A (2009) Solution State NMR structure and dynamics of KpOmpA, a 210 residue transmembrane domain possessing a high potential for immunological applications. J Mol Biol 385(1):117–130CrossRefGoogle Scholar
  63. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi H-J, Yao X-J, Weis WI, Stevens RC (2007) GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318(5854):1266–1273CrossRefADSGoogle Scholar
  64. Rostovtseva T, Colombini M (1996) ATP flux is controlled by a voltage-gated channel from the mitochondrial outer membrane. J Biol Chem 271(45):28006–28008CrossRefGoogle Scholar
  65. Schein SJ, Colombini M, Finkelstein A (1976) Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria. J Membr Biol 30(2):99–120CrossRefGoogle Scholar
  66. Schneider R, Ader C, Lange A, Giller K, Hornig S, Pongs O, Becker S, Baldus M (2008a) Solid-state NMR spectroscopy applied to a chimeric potassium channel in lipid bilayers. J Am Chem Soc 130(23):7427–7435CrossRefGoogle Scholar
  67. Schneider R, Ader C, Lange A, Giller K, Hornig S, Pongs O, Becker S, Baldus M (2008b) Solid-state NMR spectroscopy applied to a chimeric potassium channel in lipid bilayers. J Am Chem Soc 130(23):7427–7435CrossRefGoogle Scholar
  68. Schneider R, Etzkorn M, Giller K, Daebel V, Eisfeld J, Zweckstetter M, Griesinger C, Becker S, Lange A (2010) The native conformation of the human VDAC1 N terminus. Angew Chem Int Ed Engl 49(10):1882–1885CrossRefGoogle Scholar
  69. Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451(7178):591–595CrossRefADSGoogle Scholar
  70. Shanmugavadivu B, Apell H-J, Meins T, Zeth K, Kleinschmidt JH (2007) Correct folding of the beta-barrel of the human membrane protein VDAC requires a lipid bilayer. J Mol Biol 368(1):66–78CrossRefGoogle Scholar
  71. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44(4):213–223CrossRefGoogle Scholar
  72. Shi L, Peng X, Ahmed MAM, Edwards D, Brown LS, Ladizhansky V (2008) Resolution enhancement by homonuclear J-decoupling: application to three-dimensional solid-state magic angle spinning NMR spectroscopy. J Biomol NMR 41(1):9–15CrossRefGoogle Scholar
  73. Shi L, Ahmed MAM, Zhang W, Whited G, Brown LS, Ladizhansky V (2009a) Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump-structural insights. J Mol Biol 386(4):1078–1093CrossRefGoogle Scholar
  74. Shi L, Lake EMR, Ahmed MAM, Brown LS, Ladizhansky V (2009b) Solid-state NMR study of proteorhodopsin in the lipid environment: secondary structure and dynamics. Biochim Biophys Acta 1788(12):2563–2574CrossRefGoogle Scholar
  75. Shi L, Ahmed MAM, Zhang W, Whited G, Brown LS, Ladizhansky V (2009b) Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump–structural insights-supporting Info. J Mol Biol 1–9Google Scholar
  76. Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW, Kobayashi T, Stevens RC, Iwata S (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475(7354):65–70CrossRefGoogle Scholar
  77. Takegoshi K, Nakamura S, Terao T (2001) C-13-H-1 dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344(5–6):631–637CrossRefADSGoogle Scholar
  78. Tang M, Sperling LJ, Berthold DA, Schwieters CD, Nesbitt AE, Nieuwkoop AJ, Gennis RB, Rienstra CM (2011) High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. J Biomol NMR 51(3):227–233CrossRefGoogle Scholar
  79. Thompson LK, McDermott AE, Raap J, van der Wielen CM, Lugtenburg J, Herzfeld J, Griffin RG (1992) Rotational resonance NMR study of the active site structure in bacteriorhodopsin: conformation of the Schiff base linkage. Biochemistry 31:7931–7938CrossRefGoogle Scholar
  80. Thurber KR, Tycko R (2009) Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder. J Magn Reson 196(1):84–87CrossRefADSGoogle Scholar
  81. Ujwal R, Cascio D, Colletier J-P, Faham S, Zhang J, Toro L, Ping P, Abramson J (2008) The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci USA 105(46):17742–17747CrossRefADSGoogle Scholar
  82. Varga K, Tian L, McDermott AE (2007) Solid-state NMR study and assignments of the KcsA potassium ion channel of S. lividans. Biochim Biophys Acta 1774(12):1604–1613CrossRefGoogle Scholar
  83. Verardi R, Shi L, Traaseth NJ, Walsh N, Veglia G (2011) Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method. Proc Natl Acad Sci USA 108(22):9101–9106CrossRefADSGoogle Scholar
  84. Wang S, Munro RA, Shi L, Kawamura I, Okitsu T, Wada A, Kim S-Y, Jung K-H, Brown LS, Ladizhansky V (2013) Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat Methods 10(10):1007–1012CrossRefGoogle Scholar
  85. Williamson PT, Gröbner G, Spooner PJ, Miller KW, Watts A (1998) Probing the agonist binding pocket in the nicotinic acetylcholine receptor: a high-resolution solid-state NMR approach. Biochemistry 37(30):10854–10859CrossRefGoogle Scholar
  86. Williamson PT, Verhoeven A, Miller KW, Meier BH, Watts A (2007) The conformation of acetylcholine at its target site in the membrane-embedded nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 104(46):18031–18036CrossRefADSGoogle Scholar
  87. Zhou DH, Nieuwkoop AJ, Berthold DA, Comellas G, Sperling LJ, Tang M, Shah GJ, Brea EJ, Lemkau LR, Rienstra CM (2012) Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy. J Biomol NMR 54(3):291–305CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Matthew T. Eddy
    • 1
    • 2
    • 5
  • Yongchao Su
    • 1
    • 2
  • Robert Silvers
    • 1
    • 2
  • Loren Andreas
    • 1
    • 2
    • 4
  • Lindsay Clark
    • 1
    • 2
  • Gerhard Wagner
    • 3
  • Guido Pintacuda
    • 4
  • Lyndon Emsley
    • 4
  • Robert G. Griffin
    • 1
    • 2
  1. 1.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Francis Bitter Magnet LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUSA
  4. 4.Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1)Université de LyonVilleurbanneFrance
  5. 5.Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaUSA

Personalised recommendations