Advertisement

Journal of Biomolecular NMR

, Volume 64, Issue 1, pp 1–7 | Cite as

Accurate measurement of 3JHNHα couplings in small or disordered proteins from WATERGATE-optimized TROSY spectra

  • Julien Roche
  • Jinfa Ying
  • Ad BaxEmail author
Communication

Abstract

Provided that care is taken in adjusting the WATERGATE element of a 1H–15N TROSY-HSQC experiment, such that neither the water magnetization nor the 1Hα protons are inverted by its final 180° pulse, 3JHNHα couplings can be measured directly from splittings in the 1H dimension of the spectrum. With band-selective 1H decoupling, very high 15N resolution can be achieved. A complete set of 3JHNHα values, ranging from 3.4 to 10.1 Hz was measured for the 56-residue third domain of IgG-binding protein G (GB3). Using the H–N–Cα–Hα dihedral angles extracted from a RDC-refined structure of GB3, 3JHNHα values predicted by a previously parameterized Karplus equation agree to within a root-mean-square deviation (rmsd) of 0.37 Hz with the experimental data. Values measured for the Alzheimer’s implicated Aβ1−40 peptide fit to within an rmsd of 0.45 Hz to random coil 3JHNHα values.

Keywords

Abeta IDP Karplus curve Random coil Synuclein Protein NMR 

Notes

Acknowledgments

We thank Dennis A. Torchia for useful discussions, and Jung Ho Lee for preparing the sample used for Fig. 4c. This work was supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases and the Intramural Antiviral Target Program of the Office of the Director, NIH.

Supplementary material

10858_2015_4_MOESM1_ESM.pdf (45 kb)
Supplementary material 1 (PDF 45 kb)

References

  1. Ball KA, Phillips AH, Nerenberg PS, Fawzi NL, Wemmer DE, Head-Gordon T (2011) Homogeneous and heterogeneous tertiary structure ensembles of amyloid-beta peptides. Biochemistry 50:7612–7628CrossRefGoogle Scholar
  2. Ball KA, Phillips AH, Wemmer DE, Head-Gordon T (2013) Differences in beta-strand populations of monomeric A beta 40 and A beta 42. Biophys J 104:2714–2724CrossRefGoogle Scholar
  3. Ball KA, Wemmer DE, Head-Gordon T (2014) Comparison of structure determination methods for intrinsically disordered amyloid-beta peptides. J Phys Chem B 118:6405–6416CrossRefGoogle Scholar
  4. Billeter M, Neri D, Otting G, Qian YQ, Wuthrich K (1992) Precise vicinal coupling-constants 3J(HN-HA) in proteins from nonlinear fits of J-modulated [15N, 1H]-COSY experiments. J Biomol NMR 2:257–274CrossRefGoogle Scholar
  5. Bruschweiler R, Griesinger C, Sørensen OW, Ernst RR (1988) Combined use of hard and soft pulses for omega-1 decoupling in two-dimensional NMR spectroscopy. J Magn Reson 78:178–185ADSGoogle Scholar
  6. Bystrov VF (1976) Spin–spin couplings and the conformational states of peptide systems. Prog NMR Spectrosc 10:41–81CrossRefGoogle Scholar
  7. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRpipe—a multidimensional spectral processing system based on Unix pipes. J Biomol NMR 6:277–293Google Scholar
  8. Favier A, Brutscher B (2011) Recovering lost magnetization: polarization enhancement in biomolecular NMR. J Biomol NMR 49:9–15CrossRefGoogle Scholar
  9. Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93:93–141ADSGoogle Scholar
  10. Griesinger C, Sørensen OW, Ernst RR (1987) Practical aspects of the E.COSY technique. Measurement of scalar spin-spin coupling constants in peptides. J Magn Reson 75:474–492ADSGoogle Scholar
  11. Grzesiek S, Bax A (1993) The importance of not saturating H2O in protein NMR. Application to sensitivity enhancement and NOE measurement. J Am Chem Soc 115:12593–12594CrossRefGoogle Scholar
  12. Harbison GS (1993) Interference between J-couplings and cross-relaxation in solution NMR-spectroscopy—consequences for macromolecular structure determination. J Am Chem Soc 115:3026–3027CrossRefGoogle Scholar
  13. Hou LM, Shao HY, Zhang YB, Li H, Menon NK, Neuhaus EB, Brewer JM, Byeon IJL, Ray DG, Vitek MP, Iwashita T, Makula RA, Przybyla AB, Zagorski MG (2004) Solution NMR studies of the A beta(1–40) and A beta(1–42) peptides establish that the met35 oxidation state affects the mechanism of amyloid formation. J Am Chem Soc 126:1992–2005CrossRefGoogle Scholar
  14. Kay LE, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665CrossRefGoogle Scholar
  15. Kuboniwa H, Grzesiek S, Delaglio F, Bax A (1994) Measurement of HN–Hα J couplings in calcium-free calmodulin using new 2D and 3D water-flip-back methods. J Biomol NMR 4:871–878CrossRefGoogle Scholar
  16. Levitt MH, Freeman R (1979) NMR population-inversion using a composite pulse. J Magn Reson 33:473–476ADSGoogle Scholar
  17. Levitt MH, Freeman R (1981) Compensation for pulse imperfections in NMR spin-echo experiments. J Magn Reson 43:65–80ADSGoogle Scholar
  18. Lohr F, Schmidt JM, Ruterjans H (1999) Simultaneous measurement of (3)J(HN, H alpha) and (3)J(H alpha, H beta) coupling constants in C-13, N-15-labeled proteins. J Am Chem Soc 121:11821–11826CrossRefGoogle Scholar
  19. Ludvigsen S, Andersen KV, Poulsen FM (1991) Accurate measurements of coupling-constants from 2-dimensional nuclear-magnetic-resonance spectra of proteins and determination of phi-angles. J Mol Biol 217:731–736CrossRefGoogle Scholar
  20. Maltsev AS, Ying JF, Bax A (2012) Impact of N-terminal acetylation of α-synuclein on its random coil and lipid binding properties. Biochemistry 51:5004–5013CrossRefGoogle Scholar
  21. Maltsev AS, Grishaev A, Roche J, Zasloff M, Bax A (2014) Improved cross validation of a static ubiquitin structure derived from high precision residual dipolar couplings measured in a drug-based liquid crystalline phase. J Am Chem Soc 136:3752–3755CrossRefGoogle Scholar
  22. Mantsyzov AB, Shen Y, Lee JH, Hummer G, Bax A (2015) MERA: a webserver for evaluating backbone torsion angle distributions in dynamic and disordered proteins from NMR data. J Biomol NMR 63:85–95CrossRefGoogle Scholar
  23. Montelione GT, Wagner G (1989) Accurate measurements of homonuclear H–N–H–alpha coupling-constants in polypeptides using heteronuclear 2D NMR experiments. J Am Chem Soc 111:5474–5475CrossRefGoogle Scholar
  24. Pardi A, Billeter M, Wüthrich K (1984) Calibration of the angular dependence of the amide proton-Cα proton coupling constants, 3JHNα, in a globular protein: use of 3JHNα for identification of helical secondary structure. J Mol Biol 180:741–751CrossRefGoogle Scholar
  25. Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T-2 relaxation by mutual cancellation of dipole- dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371CrossRefADSGoogle Scholar
  26. Pervushin KV, Wider G, Wuthrich K (1998) Single transition-to-single transition polarization transfer (ST2-PT) in [N15, H1]-TROSY. J Biomol NMR 12:345–348CrossRefGoogle Scholar
  27. Piotto M, Saudek V, Sklenar V (1992a) Gradient-tailored excitation for single-quantum NMR-spectroscopy of aqueous-solutions. J Biomol NMR 2:661–665CrossRefGoogle Scholar
  28. Piotto M, Saudek V, Sklenár V (1992b) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous sloutions. J Biomol NMR 2:661–665CrossRefGoogle Scholar
  29. Rexroth A, Schmidt P, Szalma S, Geppert T, Schwalbe H, Griesinger C (1995) New principle for the determination of coupling-constants that largely suppresses differential relaxation effects. J Am Chem Soc 117:10389–10390CrossRefGoogle Scholar
  30. Rosenman DJ, Connors CR, Chen W, Wang C, Garcia AE (2013) A beta monomers transiently sample oligomer and fibril-like configurations: ensemble characterization using a combined MD/NMR approach. J Mol Biol 425:3338–3359CrossRefGoogle Scholar
  31. Schulte-Herbruggen T, Sorensen OW (2000) Clean TROSY: compensation for relaxation-induced artifacts. J Magn Reson 144:123–128CrossRefADSGoogle Scholar
  32. Sgourakis NG, Yan Y, McCallum SA, Wang C, Garcia AE (2007) The Alzheimer’s peptides A beta 40 and 42 adopt distinct conformations in water: a combined MD/NMR study. J Mol Biol 368:1448–1457CrossRefGoogle Scholar
  33. Sgourakis NG, Merced-Serrano M, Boutsidis C, Drineas P, Du Z, Wang C, Garcia AE (2011) Atomic-level characterization of the ensemble of the A beta(1–42) monomer in water using unbiased molecular dynamics simulations and spectral algorithms. J Mol Biol 405:570–583CrossRefGoogle Scholar
  34. Shaka AJ, Freeman R (1983) Composite pulses with dual compensation. J Magn Reson 55:487–493ADSGoogle Scholar
  35. Solyom Z, Schwarten M, Geist L, Konrat R, Willbold D, Brutscher B (2013) BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins. J Biomol NMR 55:311–321CrossRefGoogle Scholar
  36. Vogeli B, Ying JF, Grishaev A, Bax A (2007) Limits on variations in protein backbone dynamics from precise measurements of scalar couplings. J Am Chem Soc 129:9377–9385CrossRefGoogle Scholar
  37. Vuister GW, Bax A (1993) Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNHα) coupling constants in 15N-enriched proteins. J Am Chem Soc 115:7772–7777CrossRefGoogle Scholar
  38. Waelti MA, Orts J, Voegeli B, Campioni S, Riek R (2015) Solution NMR studies of recombinant A beta(1–42): from the presence of a micellar entity to residual beta-sheet structure in the soluble species. ChemBioChem 16:659–669CrossRefGoogle Scholar
  39. Wang AC, Bax A (1996) Determination of the backbone dihedral angles phi in human ubiquitin from reparametrized empirical Karplus equations. J Am Chem Soc 118:2483–2494CrossRefGoogle Scholar
  40. Yan Y, McCallum SA, Wang C (2008) M35 oxidation induces A beta 40-like structural and dynamical changes in A beta 42. J Am Chem Soc 130:5394–5395CrossRefGoogle Scholar
  41. Ying J, Roche J, Bax A (2014) Homonuclear decoupling for enhancing resolution and sensitivity in NOE and RDC measurements of peptides and proteins. J Magn Reson 241:97–102CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Laboratory of Chemical PhysicsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUSA

Personalised recommendations