Journal of Biomolecular NMR

, Volume 61, Issue 3–4, pp 321–332 | Cite as

Insight into the conformational stability of membrane-embedded BamA using a combined solution and solid-state NMR approach

  • Tessa Sinnige
  • Klaartje Houben
  • Iva Pritisanac
  • Marie Renault
  • Rolf Boelens
  • Marc BaldusEmail author


The β-barrel assembly machinery (BAM) is involved in folding and insertion of outer membrane proteins in Gram-negative bacteria, a process that is still poorly understood. With its 790 residues, BamA presents a challenge to current NMR methods. We utilized a “divide and conquer” approach in which we first obtained resonance assignments for BamA’s periplasmic POTRA domains 4 and 5 by solution NMR. Comparison of these assignments to solid-state NMR (ssNMR) data obtained on two BamA constructs including the transmembrane domain and one or two soluble POTRA domains suggested that the fold of POTRA domain 5 critically depends on the interface with POTRA 4. Using specific labeling schemes we furthermore obtained ssNMR resonance assignments for residues in the extracellular loop 6 that is known to be crucial for BamA-mediated substrate folding and insertion. Taken together, our data provide novel insights into the conformational stability of membrane-embedded, non-crystalline BamA.


NMR spectroscopy Membrane proteins Proteoliposomes β-Barrel assembly Protein dynamics 



We thank Mark Daniels and Johan van der Zwan for excellent technical support. Scientific discussions with Dr. Markus Weingarth and Prof. Jan Tommassen are gratefully acknowledged. This work was funded by the Netherlands Organization for Scientific Research (NWO) (Grants 700.26.121 and 700.10.443 to M.B.).

Supplementary material

10858_2014_9891_MOESM1_ESM.pdf (313 kb)
Supplementary material 1 (PDF 313 kb)


  1. Albrecht R et al (2014) Structure of BamA, an essential factor in outer membrane protein biogenesis. Acta Crystallogr Sect D 70:1779–1789. doi: 10.1107/S1399004714007482 CrossRefGoogle Scholar
  2. Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M (2005) Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J Am Chem Soc 127:574–581CrossRefGoogle Scholar
  3. Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95:1197–1207. doi: 10.1080/00268979809483251 CrossRefADSGoogle Scholar
  4. Bos MP, Robert V, Tommassen J (2007) Functioning of outer membrane protein assembly factor Omp85 requires a single POTRA domain. EMBO Rep 8:1149–1154. doi: 10.1038/sj.embor.7401092 CrossRefGoogle Scholar
  5. Cady SD, Schmidt-Rohr K, Wang J, Soto CS, DeGrado WF, Hong M (2010) Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463:689–692CrossRefADSGoogle Scholar
  6. de Jong RN, Daniels MA, Kaptein R, Folkers GE (2006) Enzyme free cloning for high throughput gene cloning and expression. J Struct Funct Genomics 7:109–118. doi: 10.1007/s10969-006-9014-z CrossRefGoogle Scholar
  7. Dekker N, Merck K, Tommassen J, Verheij HM (1995) In vitro folding of Escherichia coli outer-membrane phospholipase A. Eur J Biochem 232:214–219CrossRefGoogle Scholar
  8. Etzkorn M, Martell S, Andronesi OC, Seidel K, Engelhard M, Baldus M (2007) Secondary structure, dynamics, and topology of a seven-helix receptor in native membranes, studied by solid-state NMR spectroscopy. Angew Chem Int Ed 46:459–462. doi: 10.1002/anie.200602139 CrossRefGoogle Scholar
  9. Etzkorn M et al (2008) Plasticity of the PAS domain and a potential role for signal transduction in the histidine kinase DcuS. Nat Struct Mol Biol 15:1031–1039. doi: 10.1038/nsmb.1493 CrossRefGoogle Scholar
  10. Etzkorn M, Seidel K, Li L, Martell S, Geyer M, Engelhard M, Baldus M (2010) Complex formation and light activation in membrane-embedded sensory rhodopsin II as seen by solid-state NMR spectroscopy. Structure 18:293–300. doi: 10.1016/j.str.2010.01.011 CrossRefGoogle Scholar
  11. Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101. doi: 10.1006/jmre.1999.1896 CrossRefADSGoogle Scholar
  12. Gatzeva-Topalova PZ, Warner LR, Pardi A, Sousa MC (2010) Structure and flexibility of the complete periplasmic domain of BamA: the protein insertion machine of the outer membrane. Structure 18:1492–1501. doi: 10.1016/j.str.2010.08.012 CrossRefGoogle Scholar
  13. Goddard TG, Kneller DG (2008) SPARKY 3. University of California, San FranciscoGoogle Scholar
  14. Gradmann S et al (2012) Rapid prediction of multi-dimensional NMR data sets. J Biomol NMR 54:377–387. doi: 10.1007/s10858-012-9681-y CrossRefGoogle Scholar
  15. Gruss F, Zähringer F, Jakob RP, Burmann BM, Hiller S, Maier T (2013) The structural basis of autotransporter translocation by TamA. Nat Struct Mol Biol 20:1318–1320CrossRefGoogle Scholar
  16. Higman VA et al (2009) Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively 13C-labelled proteins. J Biomol NMR 44:245–260. doi: 10.1007/s10858-009-9338-7 CrossRefGoogle Scholar
  17. Kim S, Malinverni JC, Sliz P, Silhavy TJ, Harrison SC, Kahne D (2007) Structure and function of an essential component of the outer membrane protein assembly machine. Science 317:961–964. doi: 10.1126/science.1143993 CrossRefADSGoogle Scholar
  18. Knowles TJ et al (2008) Fold and function of polypeptide transport-associated domains responsible for delivering unfolded proteins to membranes. Mol Microbiol 68:1216–1227. doi: 10.1111/j.1365-2958.2008.06225.x CrossRefGoogle Scholar
  19. Lange A, Giller K, Hornig S, Martin-Eauclaire M-F, Pongs O, Becker S, Baldus M (2006) Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440:959–962. doi: 10.1038/nature04649 CrossRefADSGoogle Scholar
  20. Leonard-Rivera M, Misra R (2012) Conserved residues of the putative L6 loop of Escherichia coli BamA play a critical role in the assembly of β-barrel outer membrane proteins, including BamA itself. J Bacteriol 194:4662–4668. doi: 10.1128/JB.00825-12 CrossRefGoogle Scholar
  21. Loquet A, Lv G, Giller K, Becker S, Lange A (2011) 13C spin dilution for simplified and complete solid-state NMR resonance assignment of insoluble biological assemblies. J Am Chem Soc 133:4722–4725. doi: 10.1021/ja200066s CrossRefGoogle Scholar
  22. Ni D et al (2014) Structural and functional analysis of the β-barrel domain of BamA from Escherichia coli. FASEB J. doi: 10.1096/fj.13-248450 Google Scholar
  23. Noinaj N et al (2013) Structural insight into the biogenesis of β-barrel membrane proteins. Nature 501:385–390CrossRefADSGoogle Scholar
  24. Renault M, Bos MP, Tommassen J, Baldus M (2011) Solid-state NMR on a large multidomain integral membrane protein: the outer membrane protein assembly factor BamA. J Am Chem Soc 133:4175–4177. doi: 10.1021/ja109469c CrossRefGoogle Scholar
  25. Rigel NW, Ricci DP, Silhavy TJ (2013) Conformation-specific labeling of BamA and suppressor analysis suggest a cyclic mechanism for β-barrel assembly in Escherichia coli. Proc Nat Acad Sci USA 110:5151–5156. doi: 10.1073/pnas.1302662110 CrossRefADSGoogle Scholar
  26. Robert V, Volokhina EB, Senf F, Bos MP, Gelder PV, Tommassen J (2006) Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol 4:1984–1995. doi: 10.1371/journal.pbio.0030377 CrossRefGoogle Scholar
  27. Sánchez-Pulido L, Devos D, Genevrois S, Vicente M, Valencia A (2003) POTRA: a conserved domain in the FtsQ family and a class of beta-barrel outer membrane proteins. Trends Biochem Sci 28:523–526. doi: 10.1016/j.tibs.2003.08.003 CrossRefGoogle Scholar
  28. Seidel K, Lange A, Becker S, Hughes CE, Heise H, Baldus M (2004) Protein solid-state NMR resonance assignments from 13C, 13C correlation spectroscopy. Phys Chem Chem Phys 6:5090–5093CrossRefGoogle Scholar
  29. Shahid SA, Bardiaux B, Franks WT, Krabben L, Habeck M, van Rossum B-J, Linke D (2012) Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals. Nat Methods 9:1212–1217. doi: 10.1038/nmeth.2248 CrossRefGoogle Scholar
  30. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS + : a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223. doi: 10.1007/s10858-009-9333-z CrossRefGoogle Scholar
  31. Sinnige T, Weingarth M, Renault M, Baker L, Tommassen J, Baldus M (2014a) Solid-state NMR studies of full-length BamA in lipid bilayers suggest limited overall POTRA mobility. J Mol Biol 426:2009–2021. doi: 10.1016/j.jmb.2014.02.007 CrossRefGoogle Scholar
  32. Sinnige T, Daniëls M, Baldus M, Weingarth M (2014b) Proton clouds to measure long-range contacts between nonexchangeable side chain protons in solid-state NMR. J Am Chem Soc 136:4452–4455. doi: 10.1021/ja412870m CrossRefGoogle Scholar
  33. van der Cruijsen EAW et al (2013) Importance of lipid-pore loop interface for potassium channel structure and function. Proc Nat Acad Sci USA 110:13008–13013. doi: 10.1073/pnas.1305563110 CrossRefADSGoogle Scholar
  34. Voulhoux R, Bos MP, Geurtsen J, Mols M, Tommassen J (2003) Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299:262–265. doi: 10.1126/science.1078973 CrossRefADSGoogle Scholar
  35. Wang Y, Jardetzky O (2002) Probability-based protein secondary structure identification using combined NMR chemical-shift data. Protein Sci 11:852–861. doi: 10.1110/ps.3180102.Structure CrossRefGoogle Scholar
  36. Wang S et al (2013) Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat Methods 10:1007–1012CrossRefGoogle Scholar
  37. Weingarth M, Demco DE, Bodenhausen G, Tekely P (2009) Improved magnetization transfer in solid-state NMR with fast magic angle spinning. Chem Phys Lett 469:342–348. doi: 10.1016/j.cplett.2008.12.084 CrossRefADSGoogle Scholar
  38. Weingarth M, van der Cruijsen EAW, Ostmeyer J, Lievestro S, Roux B, Baldus M (2014) Quantitative analysis of the water occupancy around the selectivity filter of a K +channel in different gating modes. J Am Chem Soc 136(5):2000–2007. doi: 10.1021/ja411450y CrossRefGoogle Scholar
  39. Wu T, Malinverni J, Ruiz N, Kim S, Silhavy TJ, Kahne D (2005) Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121:235–245. doi: 10.1016/j.cell.2005.02.015 CrossRefGoogle Scholar
  40. Zhang H, Gao Z-Q, Hou H-F, Xu J-H, Li L-F, Su X-D, Dong Y-H (2011) High-resolution structure of a new crystal form of BamA POTRA4-5 from Escherichia coli. Acta Crystallogr Sect F 67:734–738. doi: 10.1107/S1744309111014254 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Tessa Sinnige
    • 1
  • Klaartje Houben
    • 1
  • Iva Pritisanac
    • 1
    • 2
  • Marie Renault
    • 1
    • 3
  • Rolf Boelens
    • 1
  • Marc Baldus
    • 1
    Email author
  1. 1.NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
  2. 2.Physical and Theoretical Chemistry LaboratoryOxfordUK
  3. 3.Institute of Pharmacology and Structural BiologyToulouse Cedex 04France

Personalised recommendations