Journal of Biomolecular NMR

, Volume 61, Issue 3–4, pp 227–234 | Cite as

High-resolution NMR structure of the antimicrobial peptide protegrin-2 in the presence of DPC micelles

  • K. S. Usachev
  • S. V. Efimov
  • O. A. Kolosova
  • A. V. Filippov
  • V. V. Klochkov


PG-1 adopts a dimeric structure in dodecylphosphocholine (DPC) micelles, and a channel is formed by the association of several dimers but the molecular mechanisms of the membrane damage by non-α-helical peptides are still unknown. The formation of the PG-1 dimer is important for pore formation in the lipid bilayer, since the dimer can be regarded as the primary unit for assembly into the ordered aggregates. It was supposed that only 12 residues (RGGRL-CYCRR-RFCVC-V) are needed to endow protegrin molecules with strong antibacterial activity and that at least four additional residues are needed to add potent antifungal properties. Thus, the 16-residue protegrin (PG-2) represents the minimal structure needed for broad-spectrum antimicrobial activity encompassing bacteria and fungi. As the peptide conformation and peptide-to-membrane binding properties are very sensitive to single amino acid substitutions, the solution structure of PG-2 in solution and in a membrane mimicking environment are crucial. In order to find evidence if the oligomerization state of PG-1 in a lipid environment will be the same or not for another protegrins, we investigate in the present work the PG-2 NMR solution structure in the presence of perdeuterated DPC micelles. The NMR study reported in the present work indicates that PG-2 form a well-defined structure (PDB: 2MUH) composed of a two-stranded antiparallel β-sheet when it binds to DPC micelles.


NMR Structure Protegrin Antimicrobial peptide DPC micelle 



The work is performed accordingly to the Russian Government Program of Competitive Growth of Kazan Federal University; by the subsidy allocated to Kazan Federal University for the project part of the state assignment in the sphere of scientific activities and also supported by Russian Foundation for Basic Research (Grant 14-04-31029 mol_a).


  1. Aumelas A, Mangoni M, Roumestand C, Chiche L, Despaux E, Grassy G, Calas B, Chavanieu A (1996) Synthesis and solution structure of the antimicrobial peptide protegrin-1. Eur J Biochem 237:575–583. doi: 10.1111/j.1432-1033.1996.0575p.x CrossRefGoogle Scholar
  2. Bax A, Davis DG (1985) Mlev-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J Magn Reson 65:355–360. doi: 10.1016/0022-2364(85)90018-6 ADSGoogle Scholar
  3. Bechinger B (2000) Understanding peptide interactions with the lipid bilayer: a guide to membrane protein engineering. Curr Opin Chem Biol 4:639–644. doi: 10.1016/S1367-5931(00)00143-5 CrossRefGoogle Scholar
  4. Blochin DS, Aganova OV, Yulmetov AR, Filippov A, Gizatulin BL, Afonin S, Klochkov VV (2013) Spatial structure of heptapeptide Glu-Ile-Leu-Asn-His-Met-Lys, a fragment of the HIV enhancer prostatic acid phosphatase, in aqueous and SDS micelle solutions. J Mol Struct 1033:59–66. doi: 10.1016/j.molstruc.2012.08.018 CrossRefADSGoogle Scholar
  5. Blokhin DS, Filippov AV, Antzutkin ON, Karataeva FK, Klochkov VV (2014) Spatial structure of oligopeptide PAP(248–261), the N-terminal fragment of the HIV enhancer prostatic acid phosphatase peptide PAP(248–286), in aqueous and SDS micelle solutions. J Mol Struct 1070:38–42. doi: 10.1016/j.molstruc.2014.04.019 CrossRefADSGoogle Scholar
  6. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250. doi: 10.1038/Nrmicro1098 CrossRefGoogle Scholar
  7. Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) Molprobity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D 66:12–21. doi: 10.1107/S0907444909042073 CrossRefGoogle Scholar
  8. Cho Y, Turner JS, Dinh NN, Lehrer RI (1998) Activity of protegrins against yeast-phase Candida albicans. Infect Immun 66:2486–2493Google Scholar
  9. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB III, Snoeyink J, Richardson JS, Richardson DC (2007) Molprobity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375–W383. doi: 10.1093/Nar/Gkm216 CrossRefGoogle Scholar
  10. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRpipe—a multidimensional spectral processing system based on unix pipes. J Biomol NMR 6:277–293. doi: 10.1007/Bf00197809 CrossRefGoogle Scholar
  11. Fahrner RL, Dieckmann T, Harwig SSL, Lehrer RI, Eisenberg D, Feigon J (1996) Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chem Biol 3:543–550. doi: 10.1016/S1074-5521(96)90145-3 CrossRefGoogle Scholar
  12. Friedrich CL, Moyles D, Beveridge TJ, Hancock REW (2000) Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob Agents Chemother 44:2086–2092. doi: 10.1128/Aac.44.8.2086-2092.2000 CrossRefGoogle Scholar
  13. Gidalevitz D, Ishitsuka YJ, Muresan AS, Konovalov O, Waring AJ, Lehrer RI, Lee KYC (2003) Interaction of antimicrobial peptide protegrin with biomembranes. Proc Natl Acad Sci U S A 100:6302–6307. doi: 10.1073/pnas.0934731100 CrossRefADSGoogle Scholar
  14. Gottler LM, Bea RD, Shelburne CE, Ramamoorthy A, Marsh ENG (2008) Using fluorous amino acids to probe the effects of changing hydrophobicity on the physical and biological properties of the beta-hairpin antimicrobial peptide protegrin-1. Biochemistry 47:9243–9250. doi: 10.1021/Bi801045n CrossRefGoogle Scholar
  15. Heller WT, Waring AJ, Lehrer RI, Huang HW (1998) Multiple states of beta-sheet peptide protegrin in lipid bilayers. Biochemistry 37:17331–17338. doi: 10.1021/Bi981314q CrossRefGoogle Scholar
  16. Hill CP, Yee J, Selsted ME, Eisenberg D (1991) Crystal-structure of defensin Hnp-3, an amphiphilic dimer—mechanisms of membrane permeabilization. Science 251:1481–1485. doi: 10.1126/science.2006422 CrossRefADSGoogle Scholar
  17. Hwang TL, Shaka AJ (1995) Water suppression that works—excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J Magn Reson Ser A 112:275–279. doi: 10.1006/jmra.1995.1047 CrossRefADSGoogle Scholar
  18. Jang H, Ma B, Woolf TB, Nussinov R (2006) Interaction of protegrin-1 with lipid bilayers: membrane thinning effect. Biophys J 91:2848–2859. doi: 10.1529/biophysj.106.084046 CrossRefGoogle Scholar
  19. Jang H, Ma BY, Nussinov R (2007) Conformational study of the protegrin-I (PG-I) dimer interaction with lipid bilayers and its effect. BMC Struct Biol. doi: 10.1186/1472-6807-7-21 Google Scholar
  20. Jang H, Ma B, Lal R, Nussinov R (2008) Models of toxic beta-sheet channels of protegrin-1 suggest a common subunit organization motif shared with toxic alzheimer beta-amyloid ion channels. Biophys J 95:4631–4642. doi: 10.1529/biophysj.108.134551 CrossRefGoogle Scholar
  21. Jang H, Arce FT, Mustata M, Ramachandran S, Capone R, Nussinov R, Lal R (2011) Antimicrobial protegrin-1 forms amyloid-like fibrils with rapid kinetics suggesting a functional link. Biophys J 100:1775–1783. doi: 10.1016/j.bpj.2011.01.072 CrossRefGoogle Scholar
  22. Khandelia H, Kaznessis YN (2007) Structure of the antimicrobial beta-hairpin peptide protegrin-1 in a DLPC lipid bilayer investigated by molecular dynamics simulation. BBA-Biomembr 1768:509–520. doi: 10.1016/j.bbamem.2006.11.015 CrossRefGoogle Scholar
  23. Kokryakov VN, Harwig SSL, Panyutich EA, Shevchenko AA, Aleshina GM, Shamova OV, Korneva HA, Lehrer RI (1993) Protegrins—leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett 327:231–236. doi: 10.1016/0014-5793(93)80175-T CrossRefGoogle Scholar
  24. Koradi R, Billeter M, Wuthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Gr 14:51–55. doi: 10.1016/0263-7855(96)00009-4 CrossRefGoogle Scholar
  25. Lam KLH, Ishitsuka Y, Cheng YS, Chien K, Waring AJ, Lehrer RI, Lee KYC (2006) Mechanism of supported membrane disruption by antimicrobial peptide protegrin-1. J Phys Chem B 110:21282–21286. doi: 10.1021/Jp0630065 CrossRefGoogle Scholar
  26. Lippens G, Dhalluin C, Wieruszeski JM (1995) Use of a water flip-back pulse in the homonuclear noesy experiment. J Biomol NMR 5:327–331CrossRefGoogle Scholar
  27. Liu ML, Mao XA, Ye CH, Huang H, Nicholson JK, Lindon JC (1998) Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. J Magn Reson 132:125–129. doi: 10.1006/jmre.1998.1405 CrossRefADSGoogle Scholar
  28. Mani R, Tang M, Wu X, Buffy JJ, Waring AJ, Sherman MA, Hong M (2006) Membrane-bound dimer structure of a beta-hairpin antimicrobial peptide from rotational-echo double-resonance solid-state NMR. Biochemistry 45:8341–8349. doi: 10.1021/Bi060305b CrossRefGoogle Scholar
  29. Matsuzaki K (1999) Why and how are peptide–lipid interactions utilized for self-defense? magainins and tachyplesins as archetypes. BBA-Biomembr 1462:1–10. doi: 10.1016/S0005-2736(99)00197-2 CrossRefGoogle Scholar
  30. McDonnell PA, Opella SJ (1993) Effect of detergent concentration on multidimensional solution NMR-spectra of membrane-proteins in micelles. J Magn Reson Ser B 102:120–125. doi: 10.1006/jmrb.1993.1073 CrossRefGoogle Scholar
  31. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi: 10.1002/Jcc.20084 CrossRefGoogle Scholar
  32. Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR-spectroscopy of aqueous-solutions. J Biomol NMR 2:661–665. doi: 10.1007/Bf02192855 CrossRefGoogle Scholar
  33. Porcelli F, Buck-Koehntop BA, Thennarasu S, Ramamoorthy A, Veglia G (2006) Structures of the dimeric and monomeric variants of magainin antimicrobial peptides (MSI-78 and MSI-594) in micelles and bilayers, determined by NMR spectroscopy. Biochemistry 45:5793–5799. doi: 10.1021/bi0601813 CrossRefGoogle Scholar
  34. Powers JPS, Hancock REW (2003) The relationship between peptide structure and antibacterial activity. Peptides 24:1681–1691. doi: 10.1016/j.peptides.2003.08.023 CrossRefGoogle Scholar
  35. Rodziewicz-Motowidlo S, Mickiewicz B, Greber K, Sikorska E, Szultka L, Kamysz E, Kamysz W (2010) Antimicrobial and conformational studies of the active and inactive analogues of the protegrin-1 peptide. FEBS J 277:1010–1022. doi: 10.1111/j.1742-4658.2009.07544.x CrossRefGoogle Scholar
  36. Roumestand C, Louis V, Aumelas A, Grassy G, Calas B, Chavanieu A (1998) Oligomerization of protegrin-1 in the presence of DPC micelles. A proton high-resolution NMR study. FEBS Lett 421:263–267. doi: 10.1016/S0014-5793(97)01579-2 CrossRefGoogle Scholar
  37. Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73. doi: 10.1016/S1090-7807(02)00014-9 CrossRefADSGoogle Scholar
  38. Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. BBA-Biomembr 1462:55–70. doi: 10.1016/S0005-2736(99)00200-X CrossRefGoogle Scholar
  39. Shaka AJ, Lee CJ, Pines A (1988) Iterative schemes for bilinear operators—application to spin decoupling. J Magn Reson 77:274–293. doi: 10.1016/0022-2364(88)90178-3 ADSGoogle Scholar
  40. Sitaram N, Nagaraj R (2002) Host-defense antimicrobial peptides: importance of structure for activity. Curr Pharm Design 8:727–742. doi: 10.2174/1381612023395358 CrossRefGoogle Scholar
  41. Sklenar V, Piotto M, Leppik R, Saudek V (1993) Gradient-tailored water suppression for H-1-N-15 Hsqc experiments optimized to retain full sensitivity. J Magn Reson Ser A 102:241–245. doi: 10.1006/jmra.1993.1098 CrossRefADSGoogle Scholar
  42. Sokolov Y, Mirzabekov T, Martin DW, Lehrer RI, Kagan BL (1999) Membrane channel formation by antimicrobial protegrins. BBA-Biomembr 1420:23–29. doi: 10.1016/S0005-2736(99)00086-3 CrossRefGoogle Scholar
  43. Steinberg DA et al (1997) Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob Agents Chemother 41:1738–1742Google Scholar
  44. Usachev KS, Filippov AV, Antzutkin ON, Klochkov VV (2013a) Use of a combination of the RDC method and NOESY NMR spectroscopy to determine the structure of Alzheimer’s amyloid A beta(10–35) peptide in solution and in SDS micelles. Eur Biophys J 42:803–810. doi: 10.1007/s00249-013-0928-7 CrossRefGoogle Scholar
  45. Usachev KS, Filippov AV, Filippova EA, Antzutkin ON, Klochkov VV (2013b) Solution structures of Alzheimer’s amyloid A beta(13–23) peptide: NMR studies in solution and in SDS. J Mol Struct 1049:436–440. doi: 10.1016/j.molstruc.2013.06.043 CrossRefADSGoogle Scholar
  46. Usachev KS, Filippov AV, Khairutdinov BI, Antzutkin ON, Klochkov VV (2014) NMR structure of the arctic mutation of the alzheimer’s Aβ(1–40) peptide docked to SDS micelles. J Mol Struct 1076:518–523. doi: 10.1016/j.molstruc.2014.08.030 CrossRefADSGoogle Scholar
  47. Wishart DS, Sykes BD, Richards FM (1992) The Chemical-shift index—a fast and simple method for the assignment of protein secondary structure through NMR-spectroscopy. Biochemistry 31:1647–1651. doi: 10.1021/Bi00121a010 CrossRefGoogle Scholar
  48. Yang L, Weiss TM, Lehrer RI, Huang HW (2000) Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys J 79:2002–2009CrossRefGoogle Scholar
  49. Zanetti M, Gennaro R, Romeo D (1995) Cathelicidins—a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 374:1–5. doi: 10.1016/0014-5793(95)01050-O CrossRefGoogle Scholar
  50. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395. doi: 10.1038/415389a CrossRefADSGoogle Scholar
  51. Zhao CQ, Liu LD, Lehrer RI (1994) Identification of a new member of the protegrin family by cDNA cloning. FEBS Lett 346:285–288. doi: 10.1016/0014-5793(94)00493-5 CrossRefGoogle Scholar
  52. Zhao CQ, Ganz T, Lehrer RI (1995) The structure of porcine protegrin genes. FEBS Lett 368:197–202. doi: 10.1016/0014-5793(95)00633-K CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • K. S. Usachev
    • 1
  • S. V. Efimov
    • 1
  • O. A. Kolosova
    • 1
  • A. V. Filippov
    • 1
    • 2
  • V. V. Klochkov
    • 1
  1. 1.Kazan Federal UniversityKazanRussian Federation
  2. 2.Chemistry of InterfacesLuleå University of TechnologyLuleåSweden

Personalised recommendations