Advertisement

Journal of Biomolecular NMR

, Volume 60, Issue 4, pp 231–240 | Cite as

A six-dimensional alpha proton detection-based APSY experiment for backbone assignment of intrinsically disordered proteins

  • Xuejun Yao
  • Stefan Becker
  • Markus ZweckstetterEmail author
Article

Abstract

Sequence specific resonance assignment is the prerequisite for the NMR-based analysis of the conformational ensembles and their underlying dynamics of intrinsically disordered proteins. However, rapid solvent exchange in intrinsically disordered proteins often complicates assignment strategies based on HN-detection. Here we present a six-dimensional alpha proton detection-based automated projection spectroscopy (APSY) experiment for backbone assignment of intrinsically disordered proteins. The 6D HCACONCAH APSY correlates the six different chemical shifts, Hα(i − 1), Cα(i − 1), C′(i − 1), N(i), Cα(i) and Hα(i). Application to two intrinsically disordered proteins, 140-residue α-synuclein and a 352-residue isoform of Tau, demonstrates that the chemical shift information provided by the 6D HCACONCAH APSY allows efficient backbone resonance assignment of intrinsically disordered proteins.

Keywords

NMR Intrinsically disordered protein Assignment α-Synuclein APSY Solvent exchange 

Notes

Acknowledgments

We thank Eckhard Mandelkow and Jacek Biernat for the htau23 sample. This work was in part supported by the DFG through ZW71/3-2 and ZW71/7-1.

Supplementary material

10858_2014_9872_MOESM1_ESM.pdf (84 kb)
Supplementary material 1 (PDF 83 kb)

References

  1. Atreya HS, Szyperski T (2004) G-matrix Fourier transform NMR spectroscopy for complete protein resonance assignment. Proc Natl Acad Sci USA 101:9642–9647. doi: 10.1073/pnas.0403529101 ADSCrossRefGoogle Scholar
  2. Barna JCJ, Laue ED, Mayger MR, Skilling J, Worrall SJP (1987) Exponential sampling, an alternative method for sampling in two-dimensional NMR experiments. J Magn Reson 73:69–77. doi: 10.1016/0022-2364(87)90225-3 ADSGoogle Scholar
  3. Bermel W, Bertini I, Felli IC, Kummerle R, Pierattelli R (2006a) Novel 13C direct detection experiments, including extension to the third dimension, to perform the complete assignment of proteins. J Magn Reson 178:56–64. doi: 10.1016/j.jmr.2005.08.011 ADSCrossRefGoogle Scholar
  4. Bermel W, Bertini I, Felli IC, Lee YM, Luchinat C, Pierattelli R (2006b) Protonless NMR experiments for sequence-specific assignment of backbone nuclei in unfolded proteins. J Am Chem Soc 128:3918–3919. doi: 10.1021/Ja0582206 CrossRefGoogle Scholar
  5. Bermel W, Bertini I, Chill J, Felli IC, Haba N, Kumar MVV, Pierattelli R (2012a) Exclusively heteronuclear C-13-Detected amino-acid-selective NMR experiments for the study of intrinsically disordered proteins (IDPs). Chembiochem 13:2425–2432. doi: 10.1002/cbic.201200447 CrossRefGoogle Scholar
  6. Bermel W et al (2012b) Speeding up sequence specific assignment of IDPs. J Biomol NMR 53:293–301. doi: 10.1007/s10858-012-9639-0 CrossRefGoogle Scholar
  7. Bermel W, Felli IC, Gonnelli L, Kozminski W, Piai A, Pierattelli R, Zawadzka-Kazimierczuk A (2013) High-dimensionality 13C direct-detected NMR experiments for the automatic assignment of intrinsically disordered proteins. J Biomol NMR 57:353–361. doi: 10.1007/s10858-013-9793-z CrossRefGoogle Scholar
  8. Bertini I, Duma L, Felli IC, Fey M, Luchinat C, Pierattelli R, Vasos PR (2004) A heteronuclear direct-detection NMR spectroscopy experiment for protein-backbone assignment. Angew Chem Int Edit 43:2257–2259. doi: 10.1002/anie.200453661 CrossRefGoogle Scholar
  9. Bottomley MJ, Macias MJ, Liu Z, Sattler M (1999) A novel NMR experiment for the sequential assignment of proline residues and proline stretches in 13C/15 N-labeled proteins. J Biomol NMR 13:381–385CrossRefGoogle Scholar
  10. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259CrossRefGoogle Scholar
  11. Chylla RA, Markley JL (1995) Theory and application of the maximum likelihood principle to NMR parameter estimation of multidimensional NMR data. J Biomol NMR 5:245–258CrossRefGoogle Scholar
  12. Coggins BE, Zhou P (2006) Polar Fourier transforms of radially sampled NMR data. J Magn Reson 182:84–95. doi: 10.1016/j.jmr.2006.06.016 ADSCrossRefGoogle Scholar
  13. Coggins BE, Venters RA, Zhou P (2004) Generalized reconstruction of n-D NMR spectra from multiple projections: application to the 5-D HACACONH spectrum of protein G B1 domain. J Am Chem Soc 126:1000–1001. doi: 10.1021/ja039430q CrossRefGoogle Scholar
  14. Croke RL, Sallum CO, Watson E, Watt ED, Alexandrescu AT (2008) Hydrogen exchange of monomeric alpha-synuclein shows unfolded structure persists at physiological temperature and is independent of molecular crowding in Escherichia coli. Protein Sci 17:1434–1445. doi: 10.1110/ps.033803.107 CrossRefGoogle Scholar
  15. Csizmok V, Felli IC, Tompa P, Banci L, Bertini I (2008) Structural and dynamic characterization of intrinsically disordered human securin by NMR spectroscopy. J Am Chem Soc 130:16873–16879. doi: 10.1021/ja805510b CrossRefGoogle Scholar
  16. Felli IC, Brutscher B (2009) Recent advances in solution NMR: fast methods and heteronuclear direct detection. Chemphyschem 10:1356–1368. doi: 10.1002/cphc.200900133 CrossRefGoogle Scholar
  17. Fiorito F, Hiller S, Wider G, Wuthrich K (2006) Automated resonance assignment of proteins: 6D APSY-NMR. J Biomol NMR 35:27–37. doi: 10.1007/s10858-006-0030-x CrossRefGoogle Scholar
  18. Güntert P, Dötsch V, Wider G, Wüthrich K (1992) Processing of multidimensional NMR data with the new software PROSA. J Biomol NMR 2:619–629. doi: 10.1007/Bf02192850 CrossRefGoogle Scholar
  19. Hiller S, Fiorito F, Wuthrich K, Wider G (2005) Automated projection spectroscopy (APSY). Proc Natl Acad Sci USA 102:10876–10881. doi: 10.1073/pnas.0504818102 ADSCrossRefGoogle Scholar
  20. Hiller S, Wider G, Wuthrich K (2008) APSY-NMR with proteins: practical aspects and backbone assignment. J Biomol NMR 42:179–195. doi: 10.1007/s10858-008-9266-y CrossRefGoogle Scholar
  21. Holland DJ, Bostock MJ, Gladden LF, Nietlispach D (2011) Fast multidimensional NMR spectroscopy using compressed sensing. Angew Chem Int Edit 50:6548–6551. doi: 10.1002/Anie.201100440 CrossRefGoogle Scholar
  22. Hu K, Vogeli B, Clore GM (2007) Spin-state selective carbon-detected HNCO with TROSY optimization in all dimensions and double echo-antiecho sensitivity enhancement in both indirect dimensions. J Am Chem Soc 129:5484–5491. doi: 10.1021/ja067981l CrossRefGoogle Scholar
  23. Iakoucheva LM, Brown CJ, Lawson JD, Obradovic Z, Dunker AK (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323:573–584CrossRefGoogle Scholar
  24. Jensen MR, Ruigrok RW, Blackledge M (2013) Describing intrinsically disordered proteins at atomic resolution by NMR. Curr Opin Struct Biol 23:426–435. doi: 10.1016/j.sbi.2013.02.007 CrossRefGoogle Scholar
  25. Jung YS, Zweckstetter M (2004) Mars—robust automatic backbone assignment of proteins. J Biomol NMR 30:11–23. doi: 10.1023/B:JNMR.0000042954.99056.ad CrossRefGoogle Scholar
  26. Kanelis V, Donaldson L, Muhandiram DR, Rotin D, Forman-Kay JD, Kay LE (2000) Sequential assignment of proline-rich regions in proteins: application to modular binding domain complexes. J Biomol NMR 16:253–259. doi: 10.1023/A:1008355012528 CrossRefGoogle Scholar
  27. Kay LE, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665. doi: 10.1021/Ja00052a088 CrossRefGoogle Scholar
  28. Kazimierczuk K, Orekhov VY (2011) Accelerated NMR spectroscopy by using compressed sensing. Angew Chem Int Ed Engl 50:5556–5559. doi: 10.1002/anie.201100370 CrossRefGoogle Scholar
  29. Kazimierczuk K, Kozminski W, Zhukov I (2006) Two-dimensional Fourier transform of arbitrarily sampled NMR data sets. J Magn Reson 179:323–328. doi: 10.1016/j.jmr.2006.02.001 ADSCrossRefGoogle Scholar
  30. Kazimierczuk K, Stanek J, Zawadzka-Kazimierczuk A, Kozminski W (2013) High-dimensional NMR spectra for structural studies of biomolecules. Chemphyschem 14:3015–3025. doi: 10.1002/cphc.201300277 CrossRefGoogle Scholar
  31. Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125:1385–1393. doi: 10.1021/Ja028197d CrossRefGoogle Scholar
  32. Korzhneva DM, Ibraghimov IV, Billeter M, Orekhov VY (2001) MUNIN: application of three-way decomposition to the analysis of heteronuclear NMR relaxation data. J Biomol NMR 21:263–268CrossRefGoogle Scholar
  33. Kupce E, Freeman R (2003a) Projection-reconstruction of three-dimensional NMR spectra. J Am Chem Soc 125:13958–13959. doi: 10.1021/Ja038297z CrossRefGoogle Scholar
  34. Kupce E, Freeman R (2003b) Reconstruction of the three-dimensional NMR spectrum of a protein from a set of plane projections. J Biomol NMR 27:383–387CrossRefGoogle Scholar
  35. Kupce E, Freeman R (2004) Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy. J Am Chem Soc 126:6429–6440. doi: 10.1021/ja049432q CrossRefGoogle Scholar
  36. Mantylahti S, Aitio O, Hellman M, Permi P (2010) HA-detected experiments for the backbone assignment of intrinsically disordered proteins. J Biomol NMR 47:171–181. doi: 10.1007/s10858-010-9421-0 CrossRefGoogle Scholar
  37. Mantylahti S, Hellman M, Permi P (2011) Extension of the HA-detection based approach: (HCA)CON(CA)H and (HCA)NCO(CA)H experiments for the main-chain assignment of intrinsically disordered proteins. J Biomol NMR 49:99–109. doi: 10.1007/s10858-011-9470-z CrossRefGoogle Scholar
  38. Marsh JA, Forman-Kay JD (2010) Sequence determinants of compaction in intrinsically disordered proteins. Biophys J 98:2383–2390. doi: 10.1016/j.bpj.2010.02.006 CrossRefGoogle Scholar
  39. Mccoy MA, Mueller L (1992) Nonresonant effects of frequency-selective pulses. J Magn Reson 99:18–36. doi: 10.1016/0022-2364(92)90152-W ADSGoogle Scholar
  40. Mittag T, Forman-Kay JD (2007) Atomic-level characterization of disordered protein ensembles. Curr Opin Struct Biol 17:3–14. doi: 10.1016/j.sbi.2007.01.009 CrossRefGoogle Scholar
  41. Motackova V et al (2010) Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments. J Biomol NMR 48:169–177. doi: 10.1007/s10858-010-9447-3 CrossRefGoogle Scholar
  42. Narayanan RL, Durr UH, Bibow S, Biernat J, Mandelkow E, Zweckstetter M (2010) Automatic assignment of the intrinsically disordered protein Tau with 441-residues. J Am Chem Soc 132:11906–11907. doi: 10.1021/ja105657f CrossRefGoogle Scholar
  43. Novacek J et al (2011) 5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion. J Biomol NMR 50:1–11. doi: 10.1007/s10858-011-9496-2 CrossRefGoogle Scholar
  44. Novacek J, Janda L, Dopitova R, Zidek L, Sklenar V (2013) Efficient protocol for backbone and side-chain assignments of large, intrinsically disordered proteins: transient secondary structure analysis of 49.2 kDa microtubule associated protein 2c. J Biomol NMR 56:291–301. doi: 10.1007/s10858-013-9761-7 CrossRefGoogle Scholar
  45. Orekhov VY, Ibraghimov IV, Billeter M (2001) MUNIN: a new approach to multi-dimensional NMR spectra interpretation. J Biomol NMR 20:49–60CrossRefGoogle Scholar
  46. Pervushin K, Eletsky A (2003) A new strategy for backbone resonance assignment in large proteins using a MQ-HACACO experiment. J Biomol NMR 25:147–152CrossRefGoogle Scholar
  47. Rezaei-Ghaleh N, Blackledge M, Zweckstetter M (2012) Intrinsically disordered proteins: from sequence and conformational properties toward drug discovery. Chembiochem 13:930–950. doi: 10.1002/cbic.201200093 CrossRefGoogle Scholar
  48. Shen Y, Atreya HS, Liu GH, Szyperski T (2005) G-matrix Fourier transform NOESY-based protocol for high-quality protein structure determination. J Am Chem Soc 127:9085–9099. doi: 10.1021/Ja0501870 CrossRefGoogle Scholar
  49. Shimba N et al (2004) Optimization of 13C direct detection NMR methods. J Biomol NMR 30:175–179. doi: 10.1023/B:JNMR.0000048855.35771.11 CrossRefGoogle Scholar
  50. Skora L, Becker S, Zweckstetter M (2010) Molten globule precursor states are conformationally correlated to amyloid fibrils of human beta-2-microglobulin. J Am Chem Soc 132:9223–9225. doi: 10.1021/ja100453e CrossRefGoogle Scholar
  51. Szyperski T, Atreya HS (2006) Principles and applications of GFT projection NMR spectroscopy. Magn Reson Chem 44:51–60. doi: 10.1002/mrc.1817 CrossRefGoogle Scholar
  52. Takeuchi K, Frueh DP, Hyberts SG, Sun ZY, Wagner G (2010) High-resolution 3D CANCA NMR experiments for complete mainchain assignments using Cα direct detection. J Am Chem Soc 132:2945–2951. doi: 10.1021/ja907717b CrossRefGoogle Scholar
  53. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533CrossRefGoogle Scholar
  54. Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11:739–756. doi: 10.1110/ps.4210102 CrossRefGoogle Scholar
  55. Uversky VN (2011) Flexible nets of malleable guardians: intrinsically disordered chaperones in neurodegenerative diseases. Chem Rev 111:1134–1166. doi: 10.1021/cr100186d CrossRefGoogle Scholar
  56. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246. doi: 10.1146/annurev.biophys.37.032807.125924 CrossRefGoogle Scholar
  57. Wang AC, Grzesiek S, Tschudin R, Lodi PJ, Bax A (1995) Sequential backbone assignment of isotopically enriched proteins in D2O by deuterium-decoupled HA(CA)N and HA(CACO)N. J Biomol NMR 5:376–382Google Scholar
  58. Wilkins DK, Grimshaw SB, Receveur V, Dobson CM, Jones JA, Smith LJ (1999) Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. Biochemistry 38:16424–16431. doi: 10.1021/Bi991765q CrossRefGoogle Scholar
  59. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331. doi: 10.1006/jmbi.1999.3110 CrossRefGoogle Scholar
  60. Zawadzka-Kazimierczuk A, Kozminski W, Billeter M (2012a) TSAR: a program for automatic resonance assignment using 2D cross-sections of high dimensionality, high-resolution spectra. J Biomol NMR 54:81–95. doi: 10.1007/s10858-012-9652-3 CrossRefGoogle Scholar
  61. Zawadzka-Kazimierczuk A, Kozminski W, Sanderova H, Krasny L (2012b) High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins. J Biomol NMR 52:329–337. doi: 10.1007/s10858-012-9613-x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Xuejun Yao
    • 1
  • Stefan Becker
    • 1
  • Markus Zweckstetter
    • 1
    • 2
    • 3
    Email author
  1. 1.Department for NMR-based Structural BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
  2. 2.German Center for Neurodegenerative Diseases (DZNE), GöttingenGöttingenGermany
  3. 3.Center for Nanoscale Microscopy and Molecular Physiology of the BrainUniversity Medical Center GöttingenGöttingenGermany

Personalised recommendations