Advertisement

Journal of Biomolecular NMR

, Volume 60, Issue 2–3, pp 157–168 | Cite as

NMR-based structural biology enhanced by dynamic nuclear polarization at high magnetic field

  • Eline J. Koers
  • Elwin A. W. van der Cruijsen
  • Melanie Rosay
  • Markus Weingarth
  • Alexander Prokofyev
  • Claire Sauvée
  • Olivier Ouari
  • Johan van der Zwan
  • Olaf Pongs
  • Paul Tordo
  • Werner E. Maas
  • Marc Baldus
Article

Abstract

Dynamic nuclear polarization (DNP) has become a powerful method to enhance spectroscopic sensitivity in the context of magnetic resonance imaging and nuclear magnetic resonance spectroscopy. We show that, compared to DNP at lower field (400 MHz/263 GHz), high field DNP (800 MHz/527 GHz) can significantly enhance spectral resolution and allows exploitation of the paramagnetic relaxation properties of DNP polarizing agents as direct structural probes under magic angle spinning conditions. Applied to a membrane-embedded K+ channel, this approach allowed us to refine the membrane-embedded channel structure and revealed conformational substates that are present during two different stages of the channel gating cycle. High-field DNP thus offers atomic insight into the role of molecular plasticity during the course of biomolecular function in a complex cellular environment.

Keywords

NMR Dynamic nuclear polarization Membrane Protein Solid-state NMR 

Abbreviations

AT

Ambient temperature

DNP

Dynamic nuclear polarization

LT

Low temperature

MAS

Magic angle spinning

PRE

Paramagnetic relaxation enhancement

ssNMR

Solid-state nuclear magnetic resonance

TM

Transmembrane helix

MRI

Magnetic resonance imaging

SF

Selectivity filter

PDSD

Proton-driven spin diffusion

TOTAPOL

1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol

AMUPol

(15-{[(7-oxyl-3,11-dioxa-7-azadispiro[5.1.5.3]hexadec-15-yl)carbamoyl][2-(2,5,8,11-tetraoxatridecan-13-ylamino)}-[3,11-dioxa-7-azadispiro[5.1.5.3]hexadec-7-yl])oxidanyl

Notes

Acknowledgments

We thank Mark Daniels for excellent technical support. This work was supported by NWO (grants 722.012.002 to MW and 700.11.344 and 700.58.102 to MB), DFG (Po137, 40-1 and 41-1) and NIH (NIH/NIGNS grant GM087519).

Supplementary material

10858_2014_9865_MOESM1_ESM.docx (9.3 mb)
Supplementary material 1 (DOCX 9574 kb)

References

  1. Ader C, Schneider R, Hornig S et al (2008) A structural link between inactivation and block of a K + channel. Nat Struct Mol Biol 15:605–612. doi: 10.1038/nsmb.1430 CrossRefGoogle Scholar
  2. Ader C, Schneider R, Hornig S et al (2009a) Coupling of activation and inactivation gate in a K + -channel: potassium and ligand sensitivity. EMBO J 28:2825–2834. doi: 10.1038/emboj.2009.218 CrossRefGoogle Scholar
  3. Ader C, Schneider R, Seidel K et al (2009b) Structural rearrangements of membrane proteins probed by water-edited solid-state NMR spectroscopy. J Am Chem Soc 131:170–176. doi: 10.1021/ja806306e CrossRefGoogle Scholar
  4. Ader C, Pongs O, Becker S, Baldus M (2010) Protein dynamics detected in a membrane-embedded potassium channel using two-dimensional solid-state NMR spectroscopy. Biochim Biophys Acta-Biomembr 1798:286–290. doi: 10.1016/j.bbamem.2009.06.023 CrossRefGoogle Scholar
  5. Akbey Ü, Franks WT, Linden A et al (2010) Dynamic nuclear polarization of deuterated proteins. Angew Chem Int Ed 49:7803–7806. doi: 10.1002/anie.201002044 CrossRefGoogle Scholar
  6. Andreas LB, Barnes AB, Corzilius B et al (2013) Dynamic nuclear polarization study of inhibitor binding to the M218-60 proton transporter from influenza A. Biochemistry 52:2774–2782. doi: 10.1021/bi400150x CrossRefGoogle Scholar
  7. Andrew ER, Bradbury A, Eades RG (1958) Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182:1659CrossRefADSGoogle Scholar
  8. Ardenkjær-Larsen JH, Fridlund B, Gram A et al (2003) Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci 100:10158–10163CrossRefADSGoogle Scholar
  9. Bajaj VS, Mak-Jurkauskas ML, Belenky M et al (2009) Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization-enhanced solid-state NMR. Proc Natl Acad Sci USA 106:9244–9249. doi: 10.1073/pnas.0900908106 CrossRefADSGoogle Scholar
  10. Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95:1197–1207CrossRefADSGoogle Scholar
  11. Barnes AB, Markhasin E, Daviso E et al (2012) Dynamic nuclear polarization at 700 MHz/460GHz. J Mag Reson 224:1–7. doi: 10.1016/j.jmr.2012.08.002 CrossRefADSGoogle Scholar
  12. Bernini A, Spiga O, Venditti V et al (2006) NMR studies of lysozyme surface accessibility by using different paramagnetic relaxation probes. J Am Chem Soc 128:9290–9291. doi: 10.1021/ja062109y CrossRefGoogle Scholar
  13. Bertini I, Luchinat C, Parigi G, Pierattelli R (2005) NMR spectroscopy of paramagnetic metalloproteins. ChemBioChem 6:1536–1549. doi: 10.1002/cbic.200500124 CrossRefGoogle Scholar
  14. Bhate MP, Wylie BJ, Tian L, McDermott AE (2010) Conformational dynamics in the selectivity filter of KcsA in response to potassium ion concentration. J Mol Biol 401:155–166. doi: 10.1016/j.jmb.2010.06.031 CrossRefGoogle Scholar
  15. Bloembergen N, Morgan LO (1961) Proton relaxation times in paramagnetic solutions. Effects of electron spin relaxation. J Chem Phys 34:842. doi: 10.1063/1.1731684 CrossRefADSGoogle Scholar
  16. Buffy JJ, Hong T, Yamaguchi S et al (2003) Solid-state NMR investigation of the depth of insertion of protegrin-1 in lipid bilayers using paramagnetic Mn2. Biophys J 85:2363–2373. doi: 10.1016/S0006-3495(03)74660-8 CrossRefGoogle Scholar
  17. Cassidy MC, Chan HR, Ross BD et al (2013) In vivo magnetic resonance imaging of hyperpolarized silicon particles. Nat Nanotechnol 8:363–368. doi: 10.1038/nnano.2013.65 CrossRefADSGoogle Scholar
  18. Chakrapani S, Cordero-Morales JF, Perozo E (2007) A quantitative description of KcsA gating II: single-channel currents. J Gen Physiol 130:479–496. doi: 10.1085/jgp.200709844 CrossRefGoogle Scholar
  19. Chakrapani S, Cordero-Morales JF, Jogini V et al (2011) On the structural basis of modal gating behavior in K(+) channels. Nat Struct Mol Biol 18:67–74. doi: 10.1038/nsmb.1968 CrossRefGoogle Scholar
  20. Cuello LG, Jogini V, Cortes DM et al (2010a) Structural basis for the coupling between activation and inactivation gates in K + channels. Nature 466:272–277. doi: 10.1038/nature09136 CrossRefADSGoogle Scholar
  21. Cuello LG, Jogini V, Cortes DM, Perozo E (2010b) Structural mechanism of C-type inactivation in K + channels. Nature 466:203–207. doi: 10.1038/nature09153 CrossRefADSGoogle Scholar
  22. Esposito G, Lesk AM, Molinari H et al (1992) Probing protein structure by solvent perturbation of nuclear magnetic resonance spectra. Nuclear magnetic resonance spectral editing and topological mapping in proteins by paramagnetic relaxation filtering. J Mol Biol 224:659–670CrossRefGoogle Scholar
  23. Fricke P, Demers J-P, Becker S, Lange A (2013) Studies on the MxiH protein in T3SS needles using DNP-enhanced ssNMR spectroscopy. ChemPhysChem 15:57–60. doi: 10.1002/cphc.201300994 CrossRefGoogle Scholar
  24. Gallagher FA, Kettunen MI, Day SE et al (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453:940–943. doi: 10.1038/nature07017 CrossRefADSGoogle Scholar
  25. Gelis I, Vitzthum V, Dhimole N et al (2013) Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology. J Biomol NMR 56:85–93. doi: 10.1007/s10858-013-9721-2 CrossRefGoogle Scholar
  26. Hall DA, Maus DC, Gerfen GJ et al (1997) Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. Science 276:930–932CrossRefGoogle Scholar
  27. Havlin RH, Tycko R (2005) Probing site-specific conformational distributions in protein folding with solid-state NMR. Proc Natl Acad Sci USA 102:3284–3289CrossRefADSGoogle Scholar
  28. Heise H, Luca S, de Groot BL et al (2005) Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations. Biophys J 89:2113–2120. doi: 10.1529/biophysj.105.059964 CrossRefGoogle Scholar
  29. Hocking HG, Zangger K, Madl T (2013) Studying the structure and dynamics of biomolecules by using soluble paramagnetic probes. ChemPhysChem 14:3082–3094. doi: 10.1002/cphc.201300219 CrossRefGoogle Scholar
  30. Hohwy M, Rienstra CM, Jaroniec CP, Griffin RG (1999) Fivefold symmetric homonuclear dipolar recoupling in rotating solids: application to double quantum spectroscopy. J Chem Phys 110:7983–7992CrossRefADSGoogle Scholar
  31. Hu K-N, Debelouchina GT, Smith AA, Griffin RG (2011) Quantum mechanical theory of dynamic nuclear polarization in solid dielectrics. J Chem Phys 134:125105. doi: 10.1063/1.3564920 CrossRefADSGoogle Scholar
  32. Jacso T, Franks WT, Rose H et al (2012) Characterization of membrane proteins in isolated native cellular membranes by dynamic nuclear polarization solid-state NMR spectroscopy without purification and reconstitution. Angew Chem 124:447–450. doi: 10.1002/ange.201104987 CrossRefGoogle Scholar
  33. Kagawa A, Murokawa Y, Takeda K, Kitagawa M (2009) Optimization of 1H spin density for dynamic nuclear polarization using photo-excited triplet electron spins. J Mag Reson 197:9–13. doi: 10.1016/j.jmr.2008.11.009 CrossRefADSGoogle Scholar
  34. Koers EJ, López-Deber MP, Weingarth M et al (2013) Dynamic nuclear polarization NMR spectroscopy: revealing multiple conformations in lipid-anchored peptide vaccines. Angew Chem Int Ed 52:10905–10908. doi: 10.1002/anie.201303374 CrossRefGoogle Scholar
  35. Lauterbur PC (1973) Image formation by induced local interactions-examples employing nuclear magnetic resonance. Nature 242:190–191. doi: 10.1038/242190a0 CrossRefADSGoogle Scholar
  36. Linden AH, Franks WT, Akbey Ü et al (2011a) Cryogenic temperature effects and resolution upon slow cooling of protein preparations in solid state NMR. J Biomol NMR 51:283–292. doi: 10.1007/s10858-011-9535-z CrossRefGoogle Scholar
  37. Linden AH, Lange S, Franks WT et al (2011b) Neurotoxin II bound to acetylcholine receptors in native membranes studied by dynamic nuclear polarization NMR. J Am Chem Soc 133:19266–19269. doi: 10.1021/ja206999c CrossRefGoogle Scholar
  38. Maly T, Cui D, Griffin RG, Miller A-F (2012) H-1 dynamic nuclear polarization based on an endogenous radical. J Phys Chem B 116:7055–7065. doi: 10.1021/jp300539j CrossRefGoogle Scholar
  39. Matsuki Y, Takahashi H, Ueda K et al (2010) Dynamic nuclear polarization experiments at 14.1 T for solid-state NMR. Phys Chem Chem Phys 12:5799. doi: 10.1039/c002268c CrossRefGoogle Scholar
  40. Nadaud PS, Helmus JJ, Höfer N, Jaroniec CP (2007) Long-range structural restraints in spin-labeled proteins probed by solid-state nuclear magnetic resonance spectroscopy. J Am Chem Soc 129:7502–7503. doi: 10.1021/ja072349t CrossRefGoogle Scholar
  41. Ni QZ, Daviso E, Can TV et al (2013) High frequency dynamic nuclear polarization. Acc Chem Res 46:130425010025008. doi: 10.1021/ar300348n CrossRefGoogle Scholar
  42. Otting G (2010) Protein NMR using paramagnetic ions. Annu Rev Biophys 39:387–405. doi: 10.1146/annurev.biophys.093008.131321 CrossRefGoogle Scholar
  43. Overhauser AW (1953) Polarization of nuclei in metals. Phys Rev 92:411–415CrossRefzbMATHADSGoogle Scholar
  44. Pintacuda G, Otting G (2002) Identification of protein surfaces by NMR measurements with a paramagnetic Gd(III) chelate. J Am Chem Soc 124:372–373. doi: 10.1021/ja016985h CrossRefGoogle Scholar
  45. Reggie L, Lopez JJ, Collinson I et al (2011) Dynamic nuclear polarization-enhanced solid-state NMR of a 13C-labeled signal peptide bound to lipid-reconstituted sec translocon. J Am Chem Soc 133:19084–19086. doi: 10.1021/ja209378h CrossRefGoogle Scholar
  46. Renault M, Pawsey S, Bos MP et al (2012a) Solid-state NMR spectroscopy on cellular preparations enhanced by dynamic nuclear polarization. Angew Chem Int Ed 51:2998–3001. doi: 10.1002/anie.201105984 CrossRefGoogle Scholar
  47. Renault M, Tommassen-van Boxtel R, Bos MP et al (2012b) Cellular solid-state nuclear magnetic resonance spectroscopy. Proc Natl Acad Sci 109:4863–4868. doi: 10.1073/pnas.1116478109 CrossRefADSGoogle Scholar
  48. Rosay M, Tometich L, Pawsey S et al (2010) Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results. Phys Chem Chem Phys 12:5850–5860. doi: 10.1039/c003685b CrossRefGoogle Scholar
  49. Rossini AJ, Zagdoun A, Lelli M et al (2013) Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc Chem Res 46:1942–1951. doi: 10.1021/ar300322x CrossRefGoogle Scholar
  50. Salnikov E, Rosay M, Pawsey S et al (2010) Solid-state NMR spectroscopy of oriented membrane polypeptides at 100 K with signal enhancement by dynamic nuclear polarization. J Am Chem Soc 132:5940–5941. doi: 10.1021/ja1007646 CrossRefGoogle Scholar
  51. Sauvee C, Rosay M, Casano G et al (2013) Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. Angew Chem Int Ed 52:10858–10861. doi: 10.1002/anie.201304657 CrossRefGoogle Scholar
  52. Schneider R, Ader C, Lange A et al (2008) Solid-state NMR spectroscopy applied to a chimeric potassium channel in lipid bilayers†. J Am Chem Soc 130:7427–7435. doi: 10.1021/ja800190c CrossRefGoogle Scholar
  53. Sengupta I, Nadaud PS, Helmus JJ et al (2012) Protein fold determined by paramagnetic magic-angle spinning solid-state NMR spectroscopy. Nat Chem 4:410–417. doi: 10.1038/nchem.1299 CrossRefGoogle Scholar
  54. Shen Y, Bax A (2010) SPARTA + : a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J Biomol NMR 48:13–22. doi: 10.1007/s10858-010-9433-9 CrossRefGoogle Scholar
  55. Siemer AB, Huang K-Y, McDermott AE (2012) Protein linewidth and solvent dynamics in frozen solution NMR. PLoS ONE 7:e47242. doi: 10.1371/journal.pone.0047242.g001 CrossRefADSGoogle Scholar
  56. Smith AA, Corzilius B, Bryant JA et al (2012) A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies. J Mag Reson 223:170–179. doi: 10.1016/j.jmr.2012.07.008 CrossRefADSGoogle Scholar
  57. Soares TA, Hünenberger PH, Kastenholz MA et al (2005) An improved nucleic acid parameter set for the GROMOS force field. J Comput Chem 26:725–737. doi: 10.1002/jcc.20193 CrossRefGoogle Scholar
  58. Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99:559–565. doi: 10.1103/PhysRev.99.559 CrossRefADSGoogle Scholar
  59. Takahashi H, Ayala I, Bardet M et al (2013) Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization. J Am Chem Soc 135:5105–5110. doi: 10.1021/ja312501d CrossRefGoogle Scholar
  60. Uysal S, Vasquez V, Tereshko V et al (2009) Crystal structure of full-length KcsA in its closed conformation. Proc Natl Acad Sci USA 106:6644–6649. doi: 10.1073/pnas.0810663106 CrossRefADSGoogle Scholar
  61. van der Cruijsen EAW, Nand D, Weingarth M et al (2013) Importance of lipid–pore loop interface for potassium channel structure and function. Proc Natl Acad Sci 110:13008–13013. doi: 10.1073/pnas.1305563110/-/DCSupplemental CrossRefADSGoogle Scholar
  62. van der Wel PCA, Hu K-N, Lewandowski J, Griffin RG (2006) Dynamic nuclear polarization of amyloidogenic peptide nanocrystals: GNNQQNY, a core segment of the yeast prion protein Sup35p. J Am Chem Soc 128:10840–10846. doi: 10.1021/ja0626685 CrossRefGoogle Scholar
  63. Wang T, Park YB, Caporini MA et al (2013) Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls. Proc Natl Acad Sci USA 110:16444–16449. doi: 10.1073/pnas.1316290110 CrossRefADSGoogle Scholar
  64. Weingarth M, Prokofyev A, van der Cruijsen EAW et al (2013) Structural determinants of specific lipid binding to potassium channels. J Am Chem Soc 135:3983–3988. doi: 10.1021/ja3119114 CrossRefGoogle Scholar
  65. Weingarth M, van der Cruijsen EAW, Ostmeyer J et al (2014) Quantitative analysis of the water occupancy around the selectivity filter of a K + channel in different gating modes. J Am Chem Soc 136:2000–2007. doi: 10.1021/ja411450y CrossRefGoogle Scholar
  66. Wickramasinghe NP, Parthasarathy S, Jones CR et al (2009) Nanomole-scale protein solid-state NMR by breaking intrinsic 1H T1 boundaries. Nat Method 6:215–218. doi: 10.1038/nmeth.1300 CrossRefGoogle Scholar
  67. Zachariae U, Schneider R, Velisetty P et al (2008) The molecular mechanism of toxin-induced conformational changes in a potassium channel: relation to C-type inactivation. Structure 16:747–754CrossRefGoogle Scholar
  68. Zagdoun A, Casano G, Ouari O et al (2013a) Large molecular weight nitroxide biradicals providing efficient dynamic nuclear polarization at temperatures up to 200 K. J Am Chem Soc 135:12790–12797. doi: 10.1021/ja405813t CrossRefGoogle Scholar
  69. Zagdoun A, Rossini AJ, Conley MP et al (2013b) Improved dynamic nuclear polarization surface-enhanced NMR spectroscopy through controlled incorporation of deuterated functional groups. Angew Chem Int Ed 52:1222–1225. doi: 10.1002/anie.201208699 CrossRefGoogle Scholar
  70. Zhou YF, Morais-Cabral JH, Kaufman A, Mackinnon R (2001) Chemistry of ion coordination and hydration revealed by a K + channel-Fab complex at 2.0 angstrom resolution. Nature 414:43–48CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Eline J. Koers
    • 1
  • Elwin A. W. van der Cruijsen
    • 1
  • Melanie Rosay
    • 2
  • Markus Weingarth
    • 1
  • Alexander Prokofyev
    • 1
    • 3
  • Claire Sauvée
    • 4
  • Olivier Ouari
    • 4
  • Johan van der Zwan
    • 1
  • Olaf Pongs
    • 3
  • Paul Tordo
    • 4
  • Werner E. Maas
    • 2
  • Marc Baldus
    • 1
  1. 1.NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
  2. 2.Bruker BioSpin CorporationBillericaUSA
  3. 3.Department of Physiology, Faculty of MedicineSaarland UniversityHomburgGermany
  4. 4.CNRS, ICR UMR 7273Aix-Marseille UniversitéMarseilleFrance

Personalised recommendations