Journal of Biomolecular NMR

, Volume 60, Issue 1, pp 67–71 | Cite as

Structure of the membrane protein MerF, a bacterial mercury transporter, improved by the inclusion of chemical shift anisotropy constraints

  • Ye Tian
  • George J. Lu
  • Francesca M. Marassi
  • Stanley J. Opella
NMR structure note

Biological context

Bacteria that survive in mercury-polluted environments contain an operon whose proteins constitute a mercury detoxification system (Barkay et al. 2003) that functions by importing highly toxic Hg(II) into the cytoplasm of the bacterial cell and enzymatically transforming it to its less toxic and volatile form Hg(0), which is passively eliminated. Initially, Hg(II) binds to the periplasmic protein MerP, which delivers it to a membrane protein transporter such as MerF. The membrane protein is responsible for transporting Hg(II) across the cell membrane and delivering it to MerA, the cytoplasmic mercuric reductase, a multi-domain enzyme that reduces Hg(II) to Hg(0). Understanding the molecular mechanism of mercury detoxification is important for both environmental and biomedical applications of components of the bacterial mercury detoxification system. Atomic resolution structures of MerP and MerA have been determined (Schiering et al. 1991; Steele and Opella 1997)....


Phospholipid Bilayer Magic Angle Spin Chemical Shift Anisotropy Atom RMSD Torsion Angle Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by grants from R01GM099986, P41EB002031, R01EB005161, R01GM066978, R01GM100265 and P01AI074805 from the National Institutes of Health. It utilized the BTRC for NMR Molecular Imaging of Proteins at UCSD.

Supplementary material

10858_2014_9852_MOESM1_ESM.docx (238 kb)
Supplementary material 1 (DOCX 237 kb)


  1. Baldus M, Petkova A, Herzfield J, Griffin R (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95:1197–1207ADSCrossRefGoogle Scholar
  2. Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384. doi: 10.1016/S0168-6445(03)00046-9 CrossRefGoogle Scholar
  3. Bermejo GA, Clore GM, Schwieters CD (2012) Smooth statistical torsion angle potential derived from a large conformational database via adaptive kernel density estimation improves the quality of NMR protein structures. Protein Sci 21:1824–1836. doi: 10.1002/pro.2163 CrossRefGoogle Scholar
  4. Das BB, Nothnagel HJ, Lu GJ, Son WS, Tian Y, Marassi FM, Opella SJ (2012) Structure determination of a membrane protein in proteoliposomes. J Am Chem Soc 134:2047–2056. doi: 10.1021/ja209464f CrossRefGoogle Scholar
  5. Ding Y, Yao Y, Marassi FM (2013) Membrane protein structure determination in membrana. Acc Chem Res 46:2182–2190. doi: 10.1021/ar400041a CrossRefGoogle Scholar
  6. Hardy EH, Verel R, Meier BH (2001) Fast MAS total through-bond correlation spectroscopy. J Magn Reson 148:459–464ADSCrossRefGoogle Scholar
  7. Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32:W526–W531. doi: 10.1093/nar/gkh468 CrossRefGoogle Scholar
  8. Lu GJ, Opella SJ (2014) Resonance assignments of a membrane protein in phospholipid bilayers by combining multiple strategies of oriented sample solid-state NMR. J Biomol NMR 58:69–81. doi: 10.1007/s10858-013-9806-y CrossRefGoogle Scholar
  9. Lu GJ, Tian Y, Vora N, Marassi FM, Opella SJ (2013) The structure of the mercury transporter MerF in phospholipid bilayers: a large conformational rearrangement results from N-terminal truncation. J Am Chem Soc 135:9299–9302. doi: 10.1021/ja4042115 CrossRefGoogle Scholar
  10. Murray DT, Das N, Cross TA (2013) Solid state NMR strategy for characterizing native membrane protein structures. Acc Chem Res 46:2172–2181. doi: 10.1021/ar3003442 CrossRefGoogle Scholar
  11. Oas TG, Hartzell CJ, Dahlquist W, Drobny GP (1987) The amide 15N chemical shift tensors of four peptides determined from 13C dipole-coupled chemical shift powder patterns. J Am Chem Soc 109:5962–5966CrossRefGoogle Scholar
  12. Opella SJ (2013) Structure determination of membrane proteins in their native phospholipid bilayer environment by rotationally aligned solid-state NMR spectroscopy. Acc Chem Res 46:2145–2153. doi: 10.1021/ar400067z CrossRefGoogle Scholar
  13. Schiering N, Kabsch W, Moore MJ, Distefano MD, Walsh CT, Pai EF (1991) Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607. Nature 352:168–172. doi: 10.1038/352168a0 ADSCrossRefGoogle Scholar
  14. Schwieters CD, Clore GM (2001) Internal coordinates for molecular dynamics and minimization in structure determination and refinement. J Magn Reson 152:288–302ADSCrossRefGoogle Scholar
  15. Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73. doi: 10.1016/S1090-7807(02)00014-9 ADSCrossRefGoogle Scholar
  16. Steele RA, Opella SJ (1997) Structures of the reduced and mercury-bound forms of MerP, the periplasmic protein from the bacterial mercury detoxification system. Biochemistry 36:6885–6895. doi: 10.1021/bi9631632 CrossRefGoogle Scholar
  17. Tian Y, Schwieters CD, Opella SJ, Marassi FM (2012) AssignFit: a program for simultaneous assignment and structure refinement from solid-state NMR spectra. J Magn Reson 214:42–50. doi: 10.1016/j.jmr.2011.10.002 ADSCrossRefGoogle Scholar
  18. Wilson JR, Leang C, Morby AP, Hobman JL, Brown NL (2000) MerF is a mercury transport protein: different structures but a common mechanism for mercuric ion transporters? FEBS Lett 472:78–82. doi: 10.1016/S0014-5793(00)01430-7 CrossRefGoogle Scholar
  19. Wu C, Ramamoorthy A, Gierasch LM, Opella SJ (1995) Simultaneous characterization of the amide 1H chemical shift, 1H-15N dipolar, and 15N chemical shift interaction tensors in a peptide bond by 3-dimensional solid-state NMR spectroscopy. J Am Chem Soc 117:6148–6149CrossRefGoogle Scholar
  20. Wylie BJ, Sperling LJ, Nieuwkoop AJ, Franks WT, Oldfield E, Rienstra CM (2011) Ultrahigh resolution protein structures using NMR chemical shift tensors. Proc Natl Acad Sci USA 108:16974–16979. doi: 10.1073/pnas.1103728108 ADSCrossRefGoogle Scholar
  21. Yarov-Yarovoy V, Schonbrun J, Baker D (2006) Multipass membrane protein structure prediction using Rosetta. Proteins 62:1010–1025. doi: 10.1002/prot.20817 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ye Tian
    • 1
    • 2
  • George J. Lu
    • 1
  • Francesca M. Marassi
    • 2
  • Stanley J. Opella
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaUSA
  2. 2.Sanford-Burnham Medical Research InstituteLa JollaUSA

Personalised recommendations