Journal of Biomolecular NMR

, Volume 59, Issue 4, pp 211–217 | Cite as

An approach to sequential NMR assignments of proteins: application to chemical shift restraint-based structure prediction

  • Christoph Wiedemann
  • Peter Bellstedt
  • Christian Herbst
  • Matthias Görlach
  • Ramadurai RamachandranEmail author


A procedure for the simultaneous acquisition of {HNCOCANH & HCCCONH} chemical shift correlation spectra employing sequential \(^{1}\hbox {H}\) data acquisition for moderately sized proteins is presented. The suitability of the approach for obtaining sequential resonance assignments, including complete \(^{15}\hbox {N}{},\, ^{1}\hbox {H}{}^{N},\, ^{13}\hbox {CO}{},\, ^{13}\hbox {C}^{\alpha }{},\, ^{13}\hbox {C}^{\beta }\) and \(^{1}\hbox {H}^{\alpha }\) chemical shift information, is demonstrated experimentally for a \(^{13}\hbox {C}\) and \(^{15}\hbox {N}\) labelled sample of the C-terminal winged helix (WH) domain of the minichromosome maintenance (MCM) complex of Sulfolobus solfataricus. The chemical shift information obtained was used to calculate the global fold of this winged helix domain via CS-Rosetta. This demonstrates that our procedure provides a reliable and straight-forward protocol for a quick global fold determination of moderately-sized proteins.


Protein structure prediction Sequential data acquisition Protein resonance assignment CS-Rosetta Winged helix domain 



We thank Thomas Seiboth for helpful discussions during the preparation of the manuscript. CW and PB were supported by the Leibniz Graduated School on Ageing and Age-Related Diseases (LGSA). The FLI is a member of the Science Association ‘Gottfried Wilhelm Leibniz’ (WGL) and is financially supported by the Federal Government of Germany and the State of Thuringia.

Supplementary material

10858_2014_9842_MOESM1_ESM.pdf (2.1 mb)
Supplementary material 1 (pdf 2163 KB)


  1. Bellstedt P, Ihle Y, Wiedemann C, Kirschstein A, Herbst C, Görlach M, Ramachandran R (2014) Sequential acquisition of multi-dimensional heteronuclear chemical shift correlation spectra with (1)H detection. Sci Rep 4:4490CrossRefADSGoogle Scholar
  2. Bracken C, Palmer AG, Cavanagh J (1997) (H)N(COCA)NH and HN(COCA)NH experiments for 1H–15N backbone assignments in 13C/15N-labeled proteins. J Biomol NMR 9(1):94–100CrossRefGoogle Scholar
  3. Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54(Pt 5):905–921CrossRefGoogle Scholar
  4. Carlomagno T, Maurer M, Sattler M, Schwendinger MG, Schwendinger MG, Glaser SJ, Glaser SJ, Griesinger C, Griesinger C (1996) PLUSH TACSY: homonuclear planar TACSY with two-band selective shaped pulses applied to Ca, C’ transfer and Cb, caromatic correlations. J Biomol NMR 8(2):161–170CrossRefGoogle Scholar
  5. Clowes RT, Boucher W, Hardman CH, Domaille PJ, Laue ED (1993) A 4D HCC(CO)NNH experiment for the correlation of aliphatic side-chain and backbone resonances in 13C/15N-labelled proteins. J Biomol NMR 3(3):349–354CrossRefGoogle Scholar
  6. Farmer BT, Venters RA (1995) Assignment of side-chain 13c resonances in perdeuterated proteins. J Am Chem Soc 117(14):4187–4188. doi: 10.1021/ja00119a042 CrossRefGoogle Scholar
  7. Grzesiek S, Anglister J, Ren H, Bax A (1993) 13C line narrowing by 2H decoupling in 2H/13C/15N-enriched proteins. Application to triple resonance 4D J connectivity of sequential amides. J Am Chem Soc 115(10):4369–4370CrossRefGoogle Scholar
  8. Güntert P (2004) Automated NMR structure calculation With CYANA. Protein NMR techniques. Humana Press, New Jersey, pp 353–378CrossRefGoogle Scholar
  9. Kirschstein A, Herbst C, Riedel K, Carella M, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2008a) Broadband homonuclear TOCSY with amplitude and phase-modulated RF mixing schemes. J Biomol NMR 40(4):227–237CrossRefGoogle Scholar
  10. Kirschstein A, Herbst C, Riedel K, Carella M, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2008b) Heteronuclear J cross-polarisation in liquids using amplitude and phase modulated mixing sequences. J Biomol NMR 40(4):277–283CrossRefGoogle Scholar
  11. Lange OF, Baker D (2012) Resolution-adapted recombination of structural features significantly improves sampling in restraint-guided structure calculation. Proteins 80(3):884–895CrossRefGoogle Scholar
  12. Lange OF, Rossi P, Sgourakis NG, Song Y, Lee HW, Aramini JM, Ertekin A, Xiao R, Acton TB, Montelione GT, Baker D (2012) Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. Proc Natl Acad Sci USA 109(27):10,873–10,878CrossRefGoogle Scholar
  13. Logan TM, Olejniczak ET, Xu RX, Fesik SW (1992) Side chain and backbone assignments in isotopically labeled proteins from two heteronuclear triple resonance experiments. FEBS Lett 314(3):413–418CrossRefGoogle Scholar
  14. Morris GA, Freeman R (1979) Enhancement of nuclear magnetic resonance signals by polarization transfer. J Am Chem Soc 101(3):760–762CrossRefGoogle Scholar
  15. Raman S, Lange OF, Rossi P, Tyka M, Wang X, Aramini J, Liu G, Ramelot TA, Eletsky A, Szyperski T, Kennedy MA, Prestegard J, Montelione GT, Baker D (2010) NMR structure determination for larger proteins using backbone-only data. Science 327(5968):1014–1018CrossRefADSGoogle Scholar
  16. Reddy JG, Hosur RV (2014) Complete backbone and DENQ side chain NMR assignments in proteins from a single experiment: implications to structure-function studies. J Struct Funct Genomics 15(1):25–32CrossRefGoogle Scholar
  17. Schot G, Zhang Z, Vernon R, Shen Y, Vranken WF, Baker D, Bonvin AMJJ, Lange OF (2013) Improving 3D structure prediction from chemical shift data. J Biomol NMR 57(1):27–35CrossRefGoogle Scholar
  18. Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105(12):4685–4690CrossRefADSGoogle Scholar
  19. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44(4):213–223CrossRefGoogle Scholar
  20. Shirakawa M, Wälchli M, Shimizu M, Kyogoku Y (1995) The use of heteronuclear cross-polarization for backbone assignment of (2)H-, (15)N- and (13)C-labeled proteins: A pulse scheme for triple-resonance 4D correlation of sequential amide protons and (15)N. J Biomol NMR 5(3):323–326CrossRefGoogle Scholar
  21. States DJ, Haberkorn RA, Ruben DJ (1982) A two-dimensional nuclear overhauser experiment with pure absorption phase in four quadrants. J Magn Reson 48(2):286–292ADSGoogle Scholar
  22. Venters RA, Farmer BT, Fierke CA, Spicer LD (1996) Characterizing the use of perdeuteration in NMR studies of large proteins: 13C, 15N and 1H assignments of human carbonic anhydrase II. J Mol Biol 264(5):1101–1116CrossRefGoogle Scholar
  23. Wiedemann C, Ohlenschläger O, Medagli B, Onesti S, Görlach M (2013) (1)H, (15)N and (13)C chemical shift assignments for the winged helix domains of two archeal MCM C-termini. Biomol NMR AssignGoogle Scholar
  24. Wiedemann C, Bellstedt P, Kirschstein A, Häfner S, Herbst C, Görlach M, Ramachandran R (2014) Sequential protein NMR assignments in the liquid state via sequential data acquisition. J Magn Reson 239:23–28CrossRefADSGoogle Scholar
  25. Yamazaki T, Lee W, Arrowsmith CH, Muhandiram DR, Kay LE (1994) A suite of triple resonance NMR experiments for the backbone assignment of 15N, 13C, 2H labeled proteins with high sensitivity. J Am Chem Soc 116(26):11,655–11,666CrossRefGoogle Scholar
  26. Zuiderweg EP, Zeng L, Brutscher B, Morshauser R (1996) Band-selective hetero- and homonuclear cross-polarization using trains of shaped pulses. J Biomol NMR 8(2):147–160CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Christoph Wiedemann
    • 1
  • Peter Bellstedt
    • 1
  • Christian Herbst
    • 2
  • Matthias Görlach
    • 1
  • Ramadurai Ramachandran
    • 1
    Email author
  1. 1.Biomolecular NMR SpectroscopyLeibniz Institute for Age Research - Fritz Lipmann InstituteJenaGermany
  2. 2.Department of PhysicsUbon Ratchathani UniversityUbon RatchathaniThailand

Personalised recommendations