Journal of Biomolecular NMR

, Volume 58, Issue 1, pp 69–81

Resonance assignments of a membrane protein in phospholipid bilayers by combining multiple strategies of oriented sample solid-state NMR

Article

Abstract

Oriented sample solid-state NMR spectroscopy can be used to determine the three-dimensional structures of membrane proteins in magnetically or mechanically aligned lipid bilayers. The bottleneck for applying this technique to larger and more challenging proteins is making resonance assignments, which is conventionally accomplished through the preparation of multiple selectively isotopically labeled samples and performing an analysis of residues in regular secondary structure based on Polarity Index Slant Angle (PISA) Wheels and Dipolar Waves. Here we report the complete resonance assignment of the full-length mercury transporter, MerF, an 81-residue protein, which is challenging because of overlapping PISA Wheel patterns from its two trans-membrane helices, by using a combination of solid-state NMR techniques that improve the spectral resolution and provide correlations between residues and resonances. These techniques include experiments that take advantage of the improved resolution of the MSHOT4-Pi4/Pi pulse sequence; the transfer of resonance assignments through frequency alignment of heteronuclear dipolar couplings, or through dipolar coupling correlated isotropic chemical shift analysis; 15N/15N dilute spin exchange experiments; and the use of the proton-evolved local field experiment with isotropic shift analysis to assign the irregular terminal and loop regions of the protein, which is the major “blind spot” of the PISA Wheel/Dipolar Wave method.

Keywords

Solid-state NMR Membrane protein Aligned bilayers Dipolar coupling Chemical shift anisotropy PISA Wheel Dipolar Wave 

References

  1. Banigan J, Gayen A, Traaseth N (2013) Combination of 15 N reverse labeling and afterglow spectroscopy for assigning membrane protein spectra by magic-angle-spinning solid-state NMR: application to the multidrug resistance protein EmrE. J Biomol NMR 55(4):391–399. doi:10.1007/s10858-013-9724-z CrossRefGoogle Scholar
  2. Cavanagh J, Fairbrother WJ, Palmer AG III, Skelton NJ (1996) Protein NMR spectroscopy: principles and practice. Academic Press, San DiegoGoogle Scholar
  3. Chekmenev EY, Gor’kov PL, Cross TA, Alaouie AM, Smirnov AI (2006) Flow-through lipid nanotube arrays for structure-function studies of membrane proteins by solid-state NMR spectroscopy. Biophys J 91(8):3076–3084. doi:10.1529/biophysj.106.085191 CrossRefGoogle Scholar
  4. Cross TA, Frey MH, Opella SJ (1983) Nitrogen-15 spin exchange in a protein. J Am Chem Soc 105(25):7471–7473. doi:10.1021/ja00363a060 CrossRefGoogle Scholar
  5. Cross T, Murray D, Watts A (2013) Helical membrane protein conformations and their environment. Eur Biophys J:1–25. doi:10.1007/s00249-013-0925-x
  6. Das BB, Nothnagel HJ, Lu GJ, Son WS, Tian Y, Marassi FM, Opella SJ (2012) Structure determination of a membrane protein in proteoliposomes. J Am Chem Soc 134(4):2047–2056. doi:10.1021/ja209464f CrossRefGoogle Scholar
  7. De Angelis AA, Opella SJ (2007) Bicelle samples for solid-state NMR of membrane proteins. Nat Protoc 2(10):2332–2338. doi:10.1038/nprot.2007.329 CrossRefGoogle Scholar
  8. De Angelis AA, Howell SC, Nevzorov AA, Opella SJ (2006) Structure determination of a membrane protein with two trans-membrane helices in aligned phospholipid bicelles by solid-state NMR spectroscopy. J Am Chem Soc 128(37):12256–12267. doi:10.1021/ja063640w CrossRefGoogle Scholar
  9. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293. doi:10.1007/BF00197809 CrossRefGoogle Scholar
  10. Franzin CM, Teriete P, Marassi FM (2007) Structural similarity of a membrane protein in micelles and membranes. J Am Chem Soc 129(26):8078–8079. doi:10.1021/ja0728371 CrossRefGoogle Scholar
  11. Gan Z (2000) Spin dynamics of polarization inversion spin exchange at the magic angle in multiple spin systems. J Magn Reson 143(1):136–143. doi:10.1006/jmre.1999.1971 Google Scholar
  12. Gayen A, Banigan JR, Traaseth NJ (2013) Ligand-induced conformational changes of the multidrug resistance transporter EmrE probed by oriented solid-state NMR spectroscopy. Angew Chem Int Ed 52(39):10321–10324. doi:10.1002/anie.201303091 CrossRefGoogle Scholar
  13. Goddard TD, Kneller DG (2008) SPARKY 3. University of California, San Francisco. http://www.cgl.ucsf.edu/home/sparky/. Accessed 14 Dec 2013
  14. Griffin RG (1998) Dipolar recoupling in MAS spectra of biological solids. Nat Struct Biol 5:508–512. doi:10.1038/749 CrossRefGoogle Scholar
  15. Howell SC (2007) Application of nuclear magnetic resonance spectroscopy to the structure determination of the integral membrane proteins of the Mer operon. Dissertation, University of California, San Diego, CaliforniaGoogle Scholar
  16. Howell SC, Mesleh MF, Opella SJ (2005) NMR structure determination of a membrane protein with two transmembrane helices in micelles: MerF of the bacterial mercury detoxification system. Biochemistry 44(13):5196–5206. doi:10.1021/bi048095v CrossRefGoogle Scholar
  17. Ketchem R, Hu W, Cross T (1993) High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science (New York, NY) 261(5127):1457–1460. doi:10.1126/science.7690158 ADSCrossRefGoogle Scholar
  18. Knox RW, Lu GJ, Opella SJ, Nevzorov AA (2010) A resonance assignment method for oriented-sample solid-state NMR of proteins. J Am Chem Soc 132(24):8255–8257. doi:10.1021/ja102932n CrossRefGoogle Scholar
  19. Kochendoerfer GG, Jones DH, Lee S, Oblatt-Montal M, Opella SJ, Montal M (2004) Functional characterization and NMR spectroscopy on full-length Vpu from HIV-1 prepared by total chemical synthesis. J Am Chem Soc 126(8):2439–2446. doi:10.1021/ja038985i CrossRefGoogle Scholar
  20. Lee D, Walter KFA, Brückner A-K, Hilty C, Becker S, Griesinger C (2008) Bilayer in Small bicelles revealed by lipid-protein interactions using NMR spectroscopy. J Am Chem Soc 130(42):13822–13823. doi:10.1021/ja803686p CrossRefGoogle Scholar
  21. Lu GJ, Opella SJ (2013) Motion-adapted pulse sequences for oriented sample (OS) solid-state NMR of biopolymers. J Chem Phys 139(8):084203. doi:10.1063/1.4819331 ADSCrossRefGoogle Scholar
  22. Lu GJ, Son WS, Opella SJ (2011) A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field. J Magn Reson 209(2):195–206. doi:10.1016/j.jmr.2011.01.008 ADSCrossRefGoogle Scholar
  23. Lu GJ, Park SH, Opella SJ (2012) Improved 1H amide resonance line narrowing in oriented sample solid-state NMR of membrane proteins in phospholipid bilayers. J Magn Reson 220:54–61. doi:10.1016/j.jmr.2012.04.008 ADSCrossRefGoogle Scholar
  24. Lu GJ, Tian Y, Vora N, Marassi FM, Opella SJ (2013) The structure of the mercury transporter MerF in phospholipid bilayers: a large conformational rearrangement results from N-terminal truncation. J Am Chem Soc 135(25):9299–9302. doi:10.1021/ja4042115 CrossRefGoogle Scholar
  25. Marassi FM (2001) A simple approach to membrane protein secondary structure and topology based on NMR spectroscopy. Biophys J 80(2):994–1003. doi:10.1016/S0006-3495(01)76078-X CrossRefGoogle Scholar
  26. Marassi FM, Opella SJ (2000) A solid-state NMR index of helical membrane protein structure and topology. J Magn Reson 144(1):150–155. doi:10.1006/jmre.2000.2035 Google Scholar
  27. Marassi FM, Opella SJ (2003) Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraints. Protein Sci 12(3):403–411. doi:10.1110/ps.0211503 CrossRefGoogle Scholar
  28. Marassi FM, Gesell JJ, Valente AP, Kim Y, Oblatt-Montal M, Montal M, Opella SJ (1999) Dilute spin-exchange assignment of solid-state NMR spectra of oriented proteins: acetylcholine M2 in bilayers. J Biomol NMR 14(2):141–148. doi:10.1023/a:1008391823293 CrossRefGoogle Scholar
  29. Mesleh MF, Veglia G, DeSilva TM, Marassi FM, Opella SJ (2002) Dipolar waves as NMR maps of protein structure. J Am Chem Soc 124(16):4206–4207. doi:10.1021/ja0178665 CrossRefGoogle Scholar
  30. Murray DT, Das N, Cross TA (2013) Solid state NMR strategy for characterizing native membrane protein structures. Acc Chem Res 46(9):2172–2181. doi:10.1021/ar3003442 CrossRefGoogle Scholar
  31. Nevzorov AA (2008) Mismatched Hartmann–Hahn conditions cause proton-mediated intermolecular magnetization transfer between dilute low-spin nuclei in NMR of static solids. J Am Chem Soc 130(34):11282–11283. doi:10.1021/ja804326b CrossRefGoogle Scholar
  32. Nevzorov AA, Opella SJ (2007) Selective averaging for high-resolution solid-state NMR spectroscopy of aligned samples. J Magn Reson 185(1):59–70. doi:10.1016/j.jmr.2006.09.006 ADSCrossRefGoogle Scholar
  33. Opella SJ (2013) Structure determination of membrane proteins by nuclear magnetic resonance spectroscopy. Annu Rev Anal Chem 6(1):305–328. doi:10.1146/annurev-anchem-062012-092631 CrossRefGoogle Scholar
  34. Opella SJ, Waugh JS (1977) Two-dimensional 13C NMR of highly oriented polyethylene. J Chem Phys 66(11):4919–4924. doi:10.1063/1.433831 ADSCrossRefGoogle Scholar
  35. Opella SJ, Marassi FM, Gesell JJ, Valente AP, Kim Y, Oblatt-Montal M, Montal M (1999) Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy. Nat Struct Biol 6(4):374–379. doi:10.1038/7610 CrossRefGoogle Scholar
  36. Opella SJ, Zeri AC, Park SH (2008) Structure, dynamics, and assembly of filamentous bacteriophages by nuclear magnetic resonance spectroscopy. Annu Rev Phys Chem 59:635–657. doi:10.1146/annurev.physchem.58.032806.104640 ADSCrossRefGoogle Scholar
  37. Park SH, Opella SJ (2010) Triton X-100 as the “short-chain lipid” improves the magnetic alignment and stability of membrane proteins in phosphatidylcholine bilayers for oriented-sample Solid-state NMR spectroscopy. J Am Chem Soc 132(36):12552–12553. doi:10.1021/ja1055565 CrossRefGoogle Scholar
  38. Park SH, Mrse AA, Nevzorov AA, Mesleh MF, Oblatt-Montal M, Montal M, Opella SJ (2003) Three-dimensional structure of the channel-forming trans-membrane domain of virus protein “u” (Vpu) from HIV-1. J Mol Biol 333(2):409–424. doi:10.1016/j.jmb.2003.08.048 CrossRefGoogle Scholar
  39. Park SH, Mrse AA, Nevzorov AA, De Angelis AA, Opella SJ (2006) Rotational diffusion of membrane proteins in aligned phospholipid bilayers by solid-state NMR spectroscopy. J Magn Reson 178(1):162–165. doi:10.1016/j.jmr.2005.08.008 ADSCrossRefGoogle Scholar
  40. Park SH, Das BB, De Angelis AA, Scrima M, Opella SJ (2010a) Mechanically, magnetically, and “rotationally aligned” membrane proteins in phospholipid bilayers give equivalent angular constraints for NMR structure determination. J Phys Chem B 114(44):13995–14003. doi:10.1021/jp106043w CrossRefGoogle Scholar
  41. Park SH, Marassi FM, Black D, Opella SJ (2010b) Structure and dynamics of the membrane-bound form of Pf1 coat protein: implications of structural rearrangement for virus assembly. Biophys J 99(5):1465–1474. doi:10.1016/j.bpj.2010.06.009 CrossRefGoogle Scholar
  42. Pauli J, Baldus M, van Rossum B, de Groot H, Oschkinat H (2001) Backbone and side-chain 13C and 15 N signal assignments of the α-spectrin SH3 domain by magic angle spinning solid-state NMR at 17.6 Tesla. ChemBioChem 2(4):272–281. doi:10.1002/1439-7633(20010401)2:4<272::AID-CBIC272>3.0.CO;2-2Google Scholar
  43. Raschle T, Hiller S, Etzkorn M, Wagner G (2010) Nonmicellar systems for solution NMR spectroscopy of membrane proteins. Curr Opin Struct Biol 20(4):471–479. doi:10.1016/j.sbi.2010.05.006 CrossRefGoogle Scholar
  44. Sanders CR, Hare BJ, Howard KP, Prestegard JH (1994) Magnetically-oriented phospholipid micelles as a tool for the study of membrane-associated molecules. Prog Nucl Magn Reson Spectrosc 26(Part 5):421–444. doi:10.1016/0079-6565(94)80012-X CrossRefGoogle Scholar
  45. Schmidt-Rohr K, Nanz D, Emsley L, Pines A (1994) NMR measurement of resolved heteronuclear dipole couplings in liquid crystals and lipids. J Phys Chem 98(27):6668–6670. doi:10.1021/j100078a002 CrossRefGoogle Scholar
  46. Sharma M, Yi M, Dong H, Qin H, Peterson E, Busath DD, Zhou H-X, Cross TA (2010) Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer. Science (New York, NY) 330(6003):509–512. doi:10.1126/science.1191750 ADSCrossRefGoogle Scholar
  47. Son WS, Park SH, Nothnagel HJ, Lu GJ, Wang Y, Zhang H, Cook GA, Howell SC, Opella SJ (2012) ‘q-Titration’ of long-chain and short-chain lipids differentiates between structured and mobile residues of membrane proteins studied in bicelles by solution NMR spectroscopy. J Magn Reson 214:111–118. doi:10.1016/j.jmr.2011.10.011 ADSCrossRefGoogle Scholar
  48. Tang W, Knox R, Nevzorov A (2012) A spectroscopic assignment technique for membrane proteins reconstituted in magnetically aligned bicelles. J Biomol NMR 54(3):307–316. doi:10.1007/s10858-012-9673-y CrossRefGoogle Scholar
  49. Tian Y, Schwieters CD, Opella SJ, Marassi FM (2012) AssignFit: a program for simultaneous assignment and structure refinement from solid-state NMR spectra. J Magn Reson 214:42–50. doi:10.1016/j.jmr.2011.10.002 ADSCrossRefGoogle Scholar
  50. Tolman JR, Flanagan JM, Kennedy MA, Prestegard JH (1995) Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc Natl Acad Sci 92(20):9279–9283. doi:10.1073/pnas.92.20.9279 ADSCrossRefGoogle Scholar
  51. Traaseth NJ, Gopinath T, Veglia G (2010) On the performance of spin diffusion nmr techniques in oriented solids: prospects for resonance assignments and distance measurements from separated local field experiments. J Phys Chem B 114(43):13872–13880. doi:10.1021/jp105718r CrossRefGoogle Scholar
  52. Wang J, Denny J, Tian C, Kim S, Mo Y, Kovacs F, Song Z, Nishimura K, Gan Z, Fu R, Quine JR, Cross TA (2000) Imaging membrane protein helical wheels. J Magn Reson 144(1):162–167. doi:10.1006/jmre.2000.2037 ADSCrossRefGoogle Scholar
  53. Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand E, Marcotte I (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta Biomembr 1808(8):1957–1974. doi:10.1016/j.bbamem.2011.03.016 CrossRefGoogle Scholar
  54. Wu CH, Ramamoorthy A, Opella SJ (1994) High-resolution heteronuclear dipolar solid-state NMR spectroscopy. J Magn Reson Ser A 109(2):270–272. doi:10.1006/jmra.1994.1169 ADSCrossRefGoogle Scholar
  55. Wu CH, Grant CV, Cook GA, Park SH, Opella SJ (2009) A strip-shield improves the efficiency of a solenoid coil in probes for high-field solid-state NMR of lossy biological samples. J Magn Reson 200(1):74–80. doi:10.1016/j.jmr.2009.06.004 ADSCrossRefGoogle Scholar
  56. Xu J, Struppe J, Ramamoorthy A (2008) Two-dimensional homonuclear chemical shift correlation established by the cross-relaxation driven spin diffusion in solids. J Chem Phys 128(5):052308. doi:10.1063/1.2826323 ADSCrossRefGoogle Scholar
  57. Zheng J, Jia Z (2013) Structural biology: tiny enzyme uses context to succeed. Nature 497(7450):445–446. doi:10.1038/nature12245 ADSCrossRefGoogle Scholar
  58. Zhou H-X, Cross TA (2013) Influences of membrane mimetic environments on membrane protein structures. Annu Rev Biophys 42(1):361–392. doi:10.1146/annurev-biophys-083012-130326 CrossRefGoogle Scholar
  59. Zoonens M, Comer J, Masscheleyn S, Pebay-Peyroula E, Chipot C, Miroux B, Dehez F (2013) Dangerous liaisons between detergents and membrane proteins. The case of mitochondrial uncoupling protein 2. J Am Chem Soc 135(40):15174–15182. doi:10.1021/ja407424v CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of California, San DiegoLa JollaUSA

Personalised recommendations