Journal of Biomolecular NMR

, Volume 57, Issue 4, pp 353–361 | Cite as

High-dimensionality 13C direct-detected NMR experiments for the automatic assignment of intrinsically disordered proteins

  • Wolfgang Bermel
  • Isabella C. Felli
  • Leonardo Gonnelli
  • Wiktor Koźmiński
  • Alessandro Piai
  • Roberta Pierattelli
  • Anna Zawadzka-Kazimierczuk


We present three novel exclusively heteronuclear 5D 13C direct-detected NMR experiments, namely (HN-flipN)CONCACON, (HCA)CONCACON and (H)CACON(CA)CON, designed for easy sequence-specific resonance assignment of intrinsically disordered proteins (IDPs). The experiments proposed have been optimized to overcome the drawbacks which may dramatically complicate the characterization of IDPs by NMR, namely the small dispersion of chemical shifts and the fast exchange of the amide protons with the solvent. A fast and reliable automatic assignment of α-synuclein chemical shifts was obtained with the Tool for SMFT-based Assignment of Resonances (TSAR) program based on the information provided by these experiments.


Intrinsically disordered proteins 13C direct-detection NMR Non-uniform sampling Longitudinal relaxation enhancement Multidimensional NMR experiment Automatic assignment 



This work was supported in part by the EC 7th Framework program BioNMR (contract 261863), by the EC Marie Curie ITN program IDPbyNMR (contract 264257) and by grant number IP2012 062772, funded by Polish Ministry of Science and Higher Education for years 2013–2014. AZK thanks the Foundation for Polish Science for support with the START and the POMOST programs.

Supplementary material

10858_2013_9793_MOESM1_ESM.pdf (2 mb)
Supplementary material 1 (PDF 2000 kb)


  1. Bax A, Grzesiek S (1993) Methodological advances in protein NMR. Acc Chem Res 26:131–138CrossRefGoogle Scholar
  2. Bermel W, Bertini I, Felli IC, Kümmerle R, Pierattelli R (2006a) Novel 13C direct detection experiments, including extension to the third dimension, to perform the complete assignment of proteins. J Magn Reson 178:56–64ADSCrossRefGoogle Scholar
  3. Bermel W, Bertini I, Felli IC, Lee Y-M, Luchinat C, Pierattelli R (2006b) Protonless NMR experiments for sequence-specific assignment of backbone nuclei in unfolded proteins. J Am Chem Soc 128:3918–3919CrossRefGoogle Scholar
  4. Bermel W, Bertini I, Felli IC, Piccioli M, Pierattelli R (2006c) 13C-detected protonless NMR spectroscopy of proteins in solution. Progr NMR Spectrosc 48:25–45CrossRefGoogle Scholar
  5. Bermel W, Felli IC, Kümmerle R, Pierattelli R (2008) 13C direct-detection biomolecular NMR. Concepts Magn Reson 32A:183–200CrossRefGoogle Scholar
  6. Bermel W, Bertini I, Csizmok V, Felli IC, Pierattelli R, Tompa P (2009a) H-start for exclusively heteronuclear NMR spectroscopy: the case of intrinsically disordered proteins. J Magn Reson 198:275–281ADSCrossRefGoogle Scholar
  7. Bermel W, Bertini I, Felli IC, Pierattelli R (2009b) Speeding up 13C direct detection Biomolecular NMR experiments. J Am Chem Soc 131:15339–15345CrossRefGoogle Scholar
  8. Bermel W, Bertini I, Chill JH, Felli IC, Kumar VMV, Haba N, Pierattelli R (2012a) Aminoacid-types selective 13C detected amino-acid-selective NMR experiments for the study of intrinsically disordered proteins (IDPs). ChemBioChem 13:2425–2432CrossRefGoogle Scholar
  9. Bermel W, Bertini I, Gonnelli L, Felli IC, Kozminski W, Piai A, Pierattelli R, Stanek J (2012b) Speeding up sequence specific assignment of IDPs. J Biomol NMR 53:293–301CrossRefGoogle Scholar
  10. Bermel W, Bruix M, Felli IC, Kumar VMV, Pierattelli R, Serrano S (2013) Improving the chemical shift dispersion of multidimensional NMR spectra of intrinsically disordered proteins. J Biomol NMR 55:231–237CrossRefGoogle Scholar
  11. Böhlen J-M, Bodenhausen G (1993) Experimental aspects of chirp NMR spectroscopy. J Magn Reson Ser A 102:293–301ADSCrossRefGoogle Scholar
  12. Csizmok V, Felli IC, Tompa P, Banci L, Bertini I (2008) Structural and dynamic characterization of intrinsically disordered human securin by NMR. J Am Chem Soc 130:16873–16879CrossRefGoogle Scholar
  13. Delaglio F, Grzesiek S, Vuister G, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX Pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  14. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC (2001) Intrinsically disordered protein. J Mol Graph Model 19:26–59CrossRefGoogle Scholar
  15. Dyson HJ, Wright PE (2001) Nuclear magnetic resonance methods for the elucidation of structure and dynamics in disordered states. Methods Enzymol 339:258–271CrossRefGoogle Scholar
  16. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208CrossRefGoogle Scholar
  17. Emsley L, Bodenhausen G (1992) Optimization of shaped selective pulses for NMR using a quaternion description of their overall propagators. J Magn Reson 97:135–148ADSGoogle Scholar
  18. Gil S, Hosek T, Solyom Z, Kümmerle R, Brutscher B, Pierattelli R, Felli IC (2013) NMR spectroscopic studies of intrinsically disordered proteins at near-physiological conditions. Angew Chem Int Ed. doi: 10.1002/anie.201304272
  19. Goddard TD, Kneller DG (2000) SPARKY 3. University of California, San FranciscoGoogle Scholar
  20. Haba NY, Gross R, Novacek J, Shaked H, Zidek L, Barda-Saad M, Chill JH (2013) NMR determines transient structure and dynamics in the disordered C-terminal domain of WASp interacting protein. Biophysical J 105:481–493ADSCrossRefGoogle Scholar
  21. Hiller S, Fiorito F, Wüthrich K, Wider G (2005) Automated projection spectroscopy (APSY). Proc Natl Acad Sci USA 102:10876–10881ADSCrossRefGoogle Scholar
  22. Hsu ST, Bertoncini CW, Dobson CM (2009) Use of protonless NMR spectroscopy to alleviate the loss of information resulting from exchange-broadening. J Am Chem Soc 131:7222–7223CrossRefGoogle Scholar
  23. Huang C, Ren G, Zhou H, Wang C (2005) A new method for purification of recombinant human alpha-synuclein in Escherichia coli. Protein Expr Purif 42:173–177CrossRefGoogle Scholar
  24. Kazimierczuk K, Zawadzka A, Kozminski W, Zhukov I (2006) Random sampling of evolution time space and Fourier transform processing. J Biomol NMR 36:157–168CrossRefGoogle Scholar
  25. Kazimierczuk K, Zawadzka A, Kozminski W (2008) Optimization of random time domain sampling in multidimensional NMR. J Magn Reson 192:123–130ADSCrossRefGoogle Scholar
  26. Kazimierczuk K, Zawadzka A, Kozminski W (2009) Narrow peaks and high dimensionalities: exploiting the advantages of random sampling. J Magn Reson 197:219–228ADSCrossRefGoogle Scholar
  27. Kazimierczuk K, Stanek J, Zawadzka-Kazimierczuk A, Kozminski W (2010) Random sampling in multidimensional NMR spectroscopy. Prog NMR Spectrosc 57:420–434CrossRefGoogle Scholar
  28. Knoblich K, Whittaker S, Ludwig C, Michiels P, Jiang T, Schafflhausen B, Günther U (2009) Backbone assignment of the N-terminal polyomavirus large T antigen. Biomol NMR Assign 3:119–123CrossRefGoogle Scholar
  29. Kumar D, Hosur RV (2011) hNCOcanH pulse sequence and a robust protocol for rapid and unambiguous assignment of backbone ((1) H(N), (15) N and (13) C’) resonances in (15) N/(13) C-labeled proteins. Magn Reson Chem 49:575–583CrossRefGoogle Scholar
  30. Mantylahti S, Hellman M, Permi P (2011) Extension of the HA-detection based approach: (HCA)CON(CA)H and (HCA)NCO(CA)H experiments for the main-chain assignment of intrinsically disordered proteins. J Biomol NMR 49:99–109CrossRefGoogle Scholar
  31. Mittag T, Forman-Kay J (2007) Atomic-level characterization of disordered protein ensembles. Curr Opin Struct Biol 17:3–14CrossRefGoogle Scholar
  32. Narayanan RL, Duerr HN, Bilbow S, Biernat J, Mendelkow E, Zweckstetter M (2010) Automatic assignment of the intrinsically disordered protein Tau with 441-residues. J Am Chem Soc 132:11906–11907CrossRefGoogle Scholar
  33. Novacek J, Zawadzka-Kazimierczuk A, Papoušková V, Zidek L, Sanderová H, Krasny L, Kozminski W, Sklenar V (2011) 5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion. J Biomol NMR 50:1–11CrossRefGoogle Scholar
  34. Novacek J, Haba NY, Chill JH, Zidek L, Sklenar V (2012) 4D Non-uniformly sampled HCBCACON and (1) J(NC (α))-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins. J Biomol NMR 53:139–148CrossRefGoogle Scholar
  35. Novacek J, Janda L, Dopitova R, Zidek L, Sklenar V (2013) Efficient protocol for backbone and side-chain assignments of large, intrinsically disordered proteins: transient secondary structure analysis of 49.2 kDa microtubule associated protein 2c. J Biomol NMR 56:291–301CrossRefGoogle Scholar
  36. O’Hare B, Benesi AJ, Showalter SA (2009) Incorporating 1H chemical shift determination into 13C-direct detected spectroscopy of intrinsically disordered proteins in solution. J Magn Reson 200:354–358ADSCrossRefGoogle Scholar
  37. Panchal SC, Bhavesh NS, Hosur RV (2001) Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations (13C, 15N) labeled proteins: application to unfolded proteins. J Biomol NMR 20:135–147CrossRefGoogle Scholar
  38. Pantoja-Uceda D, Santoro J (2012) New amino acid residue type identification experiments valid for protonated and deuterated proteins. J Biomol NMR 54:145–153CrossRefGoogle Scholar
  39. Pantoja-Uceda D, Santoro J (2013) Direct correlation of consecutive C’–N groups in proteins: a method for the assignment of intrinsically disordered proteins. J Biomol NMR 57:57–63CrossRefGoogle Scholar
  40. Pérez Y, Gairi M, Pons M, Bernadò P (2009) Structural characterization of the natively unfolded N-terminal domain of human c-Src kinase: insights into the role of phosphorylation of the unique domain. J Mol Biol 391:136–148CrossRefGoogle Scholar
  41. Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK (2007) Intrinsic disorder and functional proteomics. Biophys J 92:1439–1456CrossRefGoogle Scholar
  42. Schanda P, Forge V, Brutscher B (2007) Protein folding and unfolding studied at atomic resolution by fast two-dimensional NMR spectroscopy. Proc Natl Acad Sci USA 104:11257–11262ADSCrossRefGoogle Scholar
  43. Shaka AJ, Keeler J, Freeman R (1983) Evaluation of a new broadband decoupling sequence: WALTZ-16. J Magn Reson 53:313–340ADSGoogle Scholar
  44. Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64:547–552ADSGoogle Scholar
  45. Solyom Z, Schwarten M, Geist L, Konrat R, Willbold D, Brutscher B (2013) BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins. J Biomol NMR 55:311–321CrossRefGoogle Scholar
  46. Thakur A, Chandra K, Dubey A, D’Silva P, Atreya HS (2013) Rapid characterization of hydrogen exchange in proteins. Angew Chem 52:2440–2443CrossRefGoogle Scholar
  47. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533CrossRefGoogle Scholar
  48. Tompa P (2009) Structure and function of intrinsically disordered proteins. CRC Press, Boca RatonCrossRefGoogle Scholar
  49. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Shulte CF, Tolmie DE, Kent Wenger R, Yao H, Markley JL (2007) BioMagResBank. Nucleic Acids Res 36:D402–D408CrossRefGoogle Scholar
  50. Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins Struct Funct Genet 41:415–427CrossRefGoogle Scholar
  51. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331CrossRefGoogle Scholar
  52. Zawadzka-Kazimierczuk A, Kozminski W, Billeter M (2012) TSAR: a program for automatic resonance assignment using 2D cross-sections of high dimensionality, high-resolution spectra. J Biomol NMR 54:81–95CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Wolfgang Bermel
    • 1
  • Isabella C. Felli
    • 2
    • 3
  • Leonardo Gonnelli
    • 2
  • Wiktor Koźmiński
    • 4
  • Alessandro Piai
    • 2
  • Roberta Pierattelli
    • 2
    • 3
  • Anna Zawadzka-Kazimierczuk
    • 4
  1. 1.Bruker BioSpin GmbH, SilberstreifenRheinstettenGermany
  2. 2.CERMUniversity of FlorenceSesto FiorentinoItaly
  3. 3.Department of Chemistry “Ugo Schiff”University of FlorenceSesto FiorentinoItaly
  4. 4.Faculty of Chemistry, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland

Personalised recommendations