Journal of Biomolecular NMR

, Volume 57, Issue 1, pp 1–9 | Cite as

4D Non-uniformly sampled C,C-NOESY experiment for sequential assignment of 13C,15N-labeled RNAs

  • Jan Stanek
  • Peter Podbevšek
  • Wiktor Koźmiński
  • Janez Plavec
  • Mirko Cevec


A 4D 13C(aromatic),13C(ribose)-edited NOESY experiment is introduced to improve sequential assignment of non-coding RNA, often hampered by a limited dispersion of 1H and 13C chemical shifts. The 13C-labeling of RNA is fully utilized by inclusion of two 13C evolution periods. These dimensions provide enhanced dispersion of resonances in the 4D spectrum. High spectral resolution is obtained using random non-uniform sampling in three indirect dimensions. The autocorrelation peaks are efficiently suppressed using band-selective pulses. Since the dynamic range of observed resonances is significantly decreased, the reconstruction of the 4D spectrum is greatly simplified. The experiment can replace two conventionally sampled 3D NOESY spectra (either ribose-13C- or aromatic-13C-separated), and remove most ambiguities encountered during sequential walks. The assignment strategy based on a homonuclear and 4D C,C-edited NOESY experiments is proposed and verified on a 34-nt RNA showing typical structure elements.


Multidimensional NMR Non-uniform sampling Isotope labeled RNA Resonance assignment 



This work was supported by Bio-NMR project funded by European Commission’s 7th Framework Program (contract No. 1618630) and the Slovenian Research Agency, the Ministry of Higher Education, Science and Technology of the Republic of Slovenia [P1-0242 and J1-4020]. J. S. thanks Polish National Science Centre for the financial support with the Grant No. 2012/05/N/ST4/01120. The study was carried out at the Biological and Chemical Research Centre, University of Warsaw, established within the project co-financed by European Union from the European Regional Development Fund under the Operational Programme Innovative Economy, 2007–2013.

Supplementary material

10858_2013_9771_MOESM1_ESM.pdf (600 kb)
Supplementary material 1 (PDF 600 kb)


  1. Brutscher B, Simorre JP (2001) Transverse relaxation optimized HCN experiment for nucleic acids: combining the advantages of TROSY and MQ spin evolution. J Biomol NMR 21:367–372CrossRefGoogle Scholar
  2. Brutscher B, Boisbouvier J, Pardi A, Marion D, Simorre JP (1998) Improved sensitivity and resolution in 1H-13C NMR experiments of RNA. J Am Chem Soc 120:11845–11851Google Scholar
  3. Cevec M, Thibaudeau C, Plavec J (2010) NMR structure of the let-7 miRNA interacting with the site LCS1 of lin-41 mRNA from Caenorhabditis elegans. Nucleic Acids Res 38:7814–7821CrossRefGoogle Scholar
  4. Coggins BE, Zhou P (2008) High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN. J Biomol NMR 42:225–239CrossRefGoogle Scholar
  5. Diercks T, Truffault V, Coles M, Millett O (2010) Diagonal-Free 3D/4D HN, HN-TROSY-NOESY-TROSY. J Am Chem Soc 132:2138–2139CrossRefGoogle Scholar
  6. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874CrossRefGoogle Scholar
  7. Fiala R, Jiang F, Sklenář V (1998) Sensitivity optimized HCN and HCNCH experiments for 13C/15N labeled oligonucleotides. J Biomol NMR 12:373–383Google Scholar
  8. Fiala R, Czernek J, Sklenář V (2000) Transverse relaxation optimized triple-resonance NMR experiments for nucleic acids. J Biomol NMR 16:291–302CrossRefGoogle Scholar
  9. Fürtig B, Richter C, Wöhnert J, Schwalbe H (2003) NMR spectroscopy of RNA. Chembiochem 4:936–962CrossRefGoogle Scholar
  10. Goddard TD, Kneller DG (2008) SPARKY 3: University of California, San Francisco,
  11. Hyberts SG, Frueh DP, Arthanari H, Wagner G (2009) FM reconstruction of non-uniformly sampled protein NMR data at higher dimensions and optimization by distillation. J Biomol NMR 45:283–294CrossRefGoogle Scholar
  12. Kay LE, Clore GM, Bax A, Gronenborn AM (1990) Four-dimensional heteronuclear triple-resonance NMR spectroscopy of interleukin-1-beta in solution. Science 249:411–414Google Scholar
  13. Kazimierczuk K, Misiak M, Stanek J, Zawadzka-Kazimierczuk A, Koźmiński W (2012) Generalized Fourier transform for non-uniform sampled data. Top Curr Chem 316:79–124CrossRefGoogle Scholar
  14. Kupče Ē, Freeman R (1995) Adiabatic pulses for wide-band inversion and broad-band decoupling. J Magn Reson Ser A 115:273–276CrossRefGoogle Scholar
  15. Kupče Ē, Boyd J, Campbell ID (1995) Short selective pulses for biochemical applications. J Magn Reson Ser B 106:300–303CrossRefGoogle Scholar
  16. Lu K, Miyazaki Y, Summers MF (2010) Isotope labeling strategies for NMR studies of RNA. J Biomol NMR 46:113–125CrossRefGoogle Scholar
  17. Luan T, Jaravine V, Yee A, Arrowsmith CH, Orekhov VY (2005) Optimization of resolution and sensitivity of 4D NOESY using multi-dimensional decomposition. J Biomol NMR 33:1–14CrossRefGoogle Scholar
  18. Marino JP, Schwalbe H, Anklin C, Bermel W, Crothers DM, Griesinger C (1994) Three-dimensional triple-resonance 1H, 13C, 31P experiment: sequential through-bond correlation of ribose protons and intervening phosphorus along the RNA oligonucleotide backbone. J Am Chem Soc 116:6472–6473CrossRefGoogle Scholar
  19. Marino JP, Diener JL, Moore PB, Griesinger C (1997) Multiple-quantum coherence dramatically enhances the sensitivity of CH and CH2 correlations in uniformly 13C-labeled RNA. J Am Chem Soc 119:7361–7366Google Scholar
  20. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159CrossRefGoogle Scholar
  21. Mobli M, Stern AS, Bermel W, King GF, Hoch JC (2010) A non-uniformly sampled 4D HCC(CO)NH-TOCSY experiment processed using maximum entropy for rapid protein sidechain assignment. J Magn Reson 204:160–164ADSCrossRefGoogle Scholar
  22. Nikonowicz EP, Pardi A (1993) An efficient procedure for assignment of the proton, carbon and nitrogen resonances in 13C/15N labeled nucleic acids. J Mol Biol 232:1141–1156CrossRefGoogle Scholar
  23. Riek R, Pervushin K, Fernandez C, Kainosho M, Wüthrich K (2001) [13C, 13C]- and [13C, 1H]-TROSY in a triple resonance experiment for ribose-base and intrabase correlations in nucleic acids. J Am Chem Soc 123:658–664Google Scholar
  24. Stanek J, Augustyniak R, Koźminski W (2012) Suppression of sampling artefacts in high-resolution four-dimensional NMR spectra using signal separation algorithm. J Magn Reson 214:91–102ADSCrossRefGoogle Scholar
  25. Stanek J, Nowakowski M, Saxena S, Ruszczyńska-Bartnik K, Ejchart A, Koźmiński W (2013) Selective diagonal-free 13C, 13C-edited aliphatic–aromatic NOESY experiment with non-uniform sampling. J Biomol NMR 56:217–226CrossRefGoogle Scholar
  26. Varani G, Aboulela F, Allain FHT (1996) NMR investigation of RNA structure. Prog Nucl Magn Reson Spectrosc 29:51–127CrossRefGoogle Scholar
  27. Vuister GW, Clore GM, Gronenborn AM, Powers R, Garrett DS, Tschudin R, Bax A (1993) Increased resolution and improved spectral quality in four-dimensional 13C/13C-separated HMQC-NOESY-HMQC spectra using pulsed-field gradients. J Magn Reson Ser B 101:210–213Google Scholar
  28. Wen J, Zhou P, Wu JH (2012) Efficient acquisition of high-resolution 4-D diagonal-suppressed methyl–methyl NOESY for large proteins. J Magn Reson 218:128–132ADSCrossRefGoogle Scholar
  29. Werner-Allen JW, Coggins BE, Zhou P (2010) Fast acquisition of high resolution 4-D amide–amide NOESY with diagonal suppression, sparse sampling and FFT-CLEAN. J Magn Reson 204:173–178ADSCrossRefGoogle Scholar
  30. Wijmenga SS, van Buuren BNM (1998) The use of NMR methods for conformational studies of nucleic acids. Prog Nucl Magn Reson Spectrosc 32:287–387CrossRefGoogle Scholar
  31. Xia YL, Man D, Zhu G (2001) 3D H-aro-NOESY-CH3NH and C-aro-NOESY-CH3NH experiments for double labeled proteins. J Biomol NMR 19:355–360CrossRefGoogle Scholar
  32. Xu Y, Lin Z, Ho C, Yang D (2005) A general strategy for the assignment of aliphatic side-chain resonances of uniformly 13C, 15N-labeled large proteins. J Am Chem Soc 127:11920–11921CrossRefGoogle Scholar
  33. Xu YQ, Zheng Y, Fan JS, Yang DW (2006) A new strategy for structure determination of large proteins in solution without deuteration. Nat Methods 3:931–937CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jan Stanek
    • 1
  • Peter Podbevšek
    • 2
  • Wiktor Koźmiński
    • 1
  • Janez Plavec
    • 2
    • 3
    • 4
  • Mirko Cevec
    • 2
  1. 1.Faculty of Chemistry, Biological and Chemical Research CentreUniversity of WarsawWarszawaPoland
  2. 2.Slovenian NMR CentreNational Institute of ChemistryLjubljanaSlovenia
  3. 3.EN-FIST Centre of ExcellenceLjubljanaSlovenia
  4. 4.Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations