Journal of Biomolecular NMR

, Volume 57, Issue 1, pp 65–72 | Cite as

Resonance assignment for a particularly challenging protein based on systematic unlabeling of amino acids to complement incomplete NMR data sets

  • Peter BellstedtEmail author
  • Thomas Seiboth
  • Sabine Häfner
  • Henriette Kutscha
  • Ramadurai Ramachandran
  • Matthias Görlach


NMR-based structure determination of a protein requires the assignment of resonances as indispensable first step. Even though heteronuclear through-bond correlation methods are available for that purpose, challenging situations arise in cases where the protein in question only yields samples of limited concentration and/or stability. Here we present a strategy based upon specific individual unlabeling of all 20 standard amino acids to complement standard NMR experiments and to achieve unambiguous backbone assignments for the fast precipitating 23 kDa catalytic domain of human aprataxin of which only incomplete standard NMR data sets could be obtained. Together with the validation of this approach utilizing the protein GB1 as a model, a comprehensive insight into metabolic interconversion ("scrambling”) of NH and CO groups in a standard Escherichia coli expression host is provided.


Resonance assignment Unlabeling Selective isotope labeling Reverse labeling Aprataxin 

Supplementary material

10858_2013_9768_MOESM1_ESM.pdf (2.8 mb)
PDF (2843 KB)


  1. Ahel I, Rass U, El-Khamisy SF, Katyal S, Clements PM, McKinnon PJ, Caldecott KW, West SC (2006) The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates. Nature 443(7112):713–716ADSCrossRefGoogle Scholar
  2. Banigan JR, Gayen A, Traaseth NJ (2013) Combination of 15N reverse labeling and afterglow spectroscopy for assigning membrane protein spectra by magic-angle-spinning solid-state NMR: application to the multidrug resistance protein EmrE. J Biomol NMR 55(4):391–399CrossRefGoogle Scholar
  3. Bracken C, Palmer AG, Cavanagh J (1997) (H)N(COCA)NH and HN(COCA)NH experiments for 1H-15N backbone assignments in 13C/15N-labeled proteins. J Biomol NMR 9(1):94–100CrossRefGoogle Scholar
  4. Coggins BE, Venters RA, Zhou P (2010) Radial sampling for fast NMR: concepts and practices over three decades. Prog Nucl Magn Reson Spectrosc 57(4):381–419CrossRefGoogle Scholar
  5. Date H, Onodera O, Tanaka H, Iwabuchi K, Uekawa K, Igarashi S, Koike R, Hiroi T, Yuasa T, Awaya Y, Sakai T, Takahashi T, Nagatomo H, Sekijima Y, Kawachi I, Takiyama Y, Nishizawa M, Fukuhara N, Saito K, Sugano S, Tsuji S (2001) Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nat Genet 29(2):184–188CrossRefGoogle Scholar
  6. Dopeso H, Mateo-Lozano S, Elez E, Landolfi S, Ramos Pascual FJ, Hernández-Losa J, Mazzolini R, Rodrigues P, Bazzocco S, Carreras MJ, Espín E, Armengol M, Wilson AJ, Mariadason JM, Ramon Y, Cajal S, Tabernero J, Schwartz S, Arango D (2010) Aprataxin tumor levels predict response of colorectal cancer patients to irinotecan-based treatment. Clin Cancer Res 16(8):2375–2382CrossRefGoogle Scholar
  7. Felli IC, Brutscher B (2009) Recent advances in solution NMR: fast methods and heteronuclear direct detection. ChemPhysChem 10(9-10):1356–1368CrossRefGoogle Scholar
  8. Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM (2005) Magic-angle spinning solid-state NMR spectroscopy of the β1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis. J Am Chem Soc 127(35):12,291–12,305CrossRefGoogle Scholar
  9. Grzesiek S, Bax A (1992) Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J Am Chem Soc 114(16):6291–6293CrossRefGoogle Scholar
  10. Gueven N, Becherel OJ, Kijas AW, Chen P, Howe O, Rudolph JH, Gatti R, Date H, Onodera O, Taucher-Scholz G, Lavin MF (2004) Aprataxin, a novel protein that protects against genotoxic stress. Hum Mol Gen 13(10):1081–1093CrossRefGoogle Scholar
  11. Hiroaki H, Umetsu Y, Nabeshima Yi, Hoshi M, Kohda D (2011) A simplified recipe for assigning amide NMR signals using combinatorial 14N amino acid inverse-labeling. J Struct Funct Genomics 12(3):167–174CrossRefGoogle Scholar
  12. Jesson JP, Meakin P, Kneissel G (1973) Homonuclear decoupling and peak elimination in Fourier transform nuclear magnetic resonance. J Am Chem Soc 95(2):618–620CrossRefGoogle Scholar
  13. Kelly MJ, Krieger C, Ball LJ, Yu Y, Richter G, Schmieder P, Bacher A, Oschkinat H (1999) Application of amino acid type-specific 1H- and 14N-labeling in a 2H-, 15N-labeled background to a 47 kDa homodimer: potential for NMR structure determination of large proteins. J Biomol NMR 14(1):79–83CrossRefGoogle Scholar
  14. Krishnarjuna B, Jaipuria G, Thakur A, D’Silva P, Atreya HS (2011) Amino acid selective unlabeling for sequence specific resonance assignments in proteins. J Biomol NMR 49(1):39–51CrossRefGoogle Scholar
  15. Kumar D, Paul S, Hosur RV (2010) BEST-HNN and 2D-(HN)NH experiments for rapid backbone assignment in proteins. J Magn Reson 204(1):111–117ADSCrossRefGoogle Scholar
  16. Kupče E, Freeman R (2004) Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy. J Am Chem Soc 126(20):6429–6440CrossRefGoogle Scholar
  17. Lescop E, Schanda P, Brutscher B (2007) A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J Magn Reson 187(1):163–169ADSCrossRefGoogle Scholar
  18. Marion D (2010) Combining methods for speeding up multi-dimensional acquisition. Sparse sampling and fast pulsing methods for unfolded proteins. J Magn Reson 206(1):81–87ADSCrossRefGoogle Scholar
  19. Moreira MC, Barbot C, Tachi N, Kozuka N, Uchida E, Gibson T, Mendonça P, Costa M, Barros J, Yanagisawa T, Watanabe M, Ikeda Y, Aoki M, Nagata T, Coutinho P, Sequeiros J, Koenig M (2001) The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat Genet 29(2):189–193CrossRefGoogle Scholar
  20. Mori S, Abeygunawardana C, Johnson MO, Vanzijl PCM (1995) Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J Magn Reson 108(1):94–98CrossRefGoogle Scholar
  21. Morita EH, Shimizu M, Ogasawara T, Endo Y, Tanaka R, Kohno T (2004) A novel way of amino acid-specific assignment in 1H- 15N HSQC spectra with a wheat germ cell-free protein synthesis system. J Biomol NMR 30(1):37–45CrossRefGoogle Scholar
  22. Muchmore DC, McIntosh LP, Russell CB, Anderson DE, Dahlquist FW (1989) Expression and nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance. Methods Enzymol 177:44–73CrossRefGoogle Scholar
  23. O’Grady C, Rempel BL, Sokaribo A, Nokhrin S, Dmitriev OY (2012) One-step amino acid selective isotope labeling of proteins in prototrophic Escherichia coli strains. Anal Biochem 426(2):126–128CrossRefGoogle Scholar
  24. Parker MJ, Aulton-Jones M, Hounslow AM, Craven CJ (2004) A combinatorial selective labeling method for the assignment of backbone amide NMR resonances. J Am Chem Soc 126(16):5020–5021CrossRefGoogle Scholar
  25. Qiang W (2011) Signal enhancement for the sensitivity-limited solid state NMR experiments using a continuous, non-uniform acquisition scheme. J Magn Reson 213(1):171–175ADSCrossRefGoogle Scholar
  26. Rasia RM, Brutscher B, Plevin MJ (2012) Selective isotopic unlabeling of proteins using metabolic precursors: application to NMR assignment of intrinsically disordered proteins. ChemBioChem 13(5):732–739CrossRefGoogle Scholar
  27. Rass U, Ahel I, West SC (2007) Actions of aprataxin in multiple DNA repair pathways. J Biol Chem 282(13):9469–9474CrossRefGoogle Scholar
  28. Rass U, Ahel I, West SC (2008) Molecular mechanism of DNA deadenylation by the neurological disease protein aprataxin. J Biol Chem 283(49):33,994–34,001Google Scholar
  29. Schubert M (2001) MUSIC, selective pulses, and tuned delays: amino acid type-selective 1H–15N correlations, II. J Magn Reson 148(1):61–72ADSCrossRefGoogle Scholar
  30. Schubert M, Smalla M, Schmieder P, Oschkinat H (1999) MUSIC in triple-resonance experiments: amino acid type-selective (1)H-(15)N correlations. J Magn Reson 141(1):34–43ADSCrossRefGoogle Scholar
  31. Shortle D (1994) Assignment of amino acid type in 1H-15N correlation spectra by labeling with 14N-amino acids. J Magn Reson 105(1):88–90CrossRefGoogle Scholar
  32. Strauss A, Bitsch F, Cutting B, Fendrich G, Graff P, Liebetanz J, Zurini M, Jahnke W (2003) Amino-acid-type selective isotope labeling of proteins expressed in Baculovirus-infected insect cells useful for NMR studies. J Biomol NMR 26(4):367–372CrossRefGoogle Scholar
  33. Studier F, Moffatt B (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189(1):113–130CrossRefGoogle Scholar
  34. Su XC, Loh CT, Qi R, Otting G (2011) Suppression of isotope scrambling in cell-free protein synthesis by broadband inhibition of PLP enymes for selective 15N-labelling and production of perdeuterated proteins in H2O. J Biomol NMR 50(1):35–42CrossRefGoogle Scholar
  35. Takeuchi K, Ng E, Malia TJ, Wagner G (2007) 1-13C amino acid selective labeling in a 2H15N background for NMR studies of large proteins. J Biomol NMR 38(1):89–98CrossRefGoogle Scholar
  36. Tanio M, Tanaka R, Tanaka T, Kohno T (2009) Amino acid-selective isotope labeling of proteins for nuclear magnetic resonance study: proteins secreted by Brevibacillus choshinensis. Anal Biochem 386(2):156–160CrossRefGoogle Scholar
  37. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Kent Wenger R, Yao H, Markley JL (2007) BioMagResBank. Nucleic Acids Res 36(Database):D402–D408CrossRefGoogle Scholar
  38. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59(4):687–696CrossRefGoogle Scholar
  39. Waugh D (1996) Genetic tools for selective labeling of proteins with alpha-15N-amino acids. J Biomol NMR 8(2):184–192CrossRefGoogle Scholar
  40. Wittekind M, Mueller L (1993) HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha-and beta-carbon resonances in proteins. J Magn Reson 101(2):201–205CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Peter Bellstedt
    • 1
    Email author
  • Thomas Seiboth
    • 1
  • Sabine Häfner
    • 1
  • Henriette Kutscha
    • 1
  • Ramadurai Ramachandran
    • 1
  • Matthias Görlach
    • 1
  1. 1.Biomolecular NMR SpectroscopyLeibniz Institute for Age Research, Fritz Lipmann InstituteJenaGermany

Personalised recommendations